Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 226: 109309, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400284

RESUMO

Endothelium phenotype is known to be closely associated with flow shear stress. This study is to determine the topographic distribution of endothelial cells and the phenotype of different quadrants and regions of Schlemm's canal using human donor eyes. This study infers differences in flow dynamics based on cell shape and intracellular structure. The Schlemm's canal from 15 human donor eyes were either perfusion labelled using silver stain or dissected for float labeling with Phalloidin to enable visualization of endothelial cell border and intracellular structure. Data were acquired for endothelial cells from the outer and inner wall of Schlemm's canal and grouped according to quadrant of origin. Measurements included endothelial cell length, width, area, and aspect ratio and compared between quadrants. Endothelial cells are mostly spindle-shape and the cell size on the outer wall are larger and longer than those from the inner wall. Significant differences in endothelial cell size and shape were seen in different quadrants. The endothelial cells have varied shapes and orientations close to large ostia in the outer wall and remarkably long endothelial cells were found in the walls of collector channels. F-actin aggregation was found at all endothelial cell borders, and inside some of the endothelial cytoplasm. The presence of various spindle shapes, significant phenotype heterogeneity and F-actin aggregation of endothelial cells indicates aqueous humor flow likely creates variations in shear stress within Schlemm's canal. Further investigation of the relationship between the phenotype heterogeneity and hydrodynamics of aqueous flow may help us understand the mechanisms of outflow resistance changes in glaucoma.


Assuntos
Células Endoteliais , Malha Trabecular , Humanos , Actinas , Humor Aquoso , Canal de Schlemm , Esclera , Endotélio
2.
Exp Eye Res ; 230: 109445, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948437

RESUMO

The permeability of iris blood vessels has an important role in maintaining aqueous humor (AH) homeostasis, contributing to variation in iris volume and probably the pathogenesis of angle closure glaucoma. This study investigates the permeability of the iris microvasculature to plasma-derived protein and correspond it with the morphologic characteristics of vascular mural cells (MCs). Twenty-two enucleated porcine eyes were used in this study. 12 eyes were micro-perfused with vehicle alone as control or with FITC-albumin as a marker of protein leakage and histological sections subsequently made to examine for FITC-albumin presence. The other 10 eyes were immunolabeled via micro-perfusion for αSMA and VE-cadherin to investigate their topographic distribution in the porcine iris vasculature, and to cross correspond with the locations of FITC-albumin deposits. Distribution of FITC-signals exhibited a site-dependent pattern and time-dependent change in the iris. Fluorescence was initially detected around capillaries in the superficial and deep layer of the iris microvascular network. The pupillary region and the iris root retained more fluorescent signal than the iridal ciliary region. At low magnification, αSMA labelling displayed a regional variation which was inversely correlated with vascular permeability. At the cellular level, αSMA labeling corresponded with vascular MCs distribution in the iris vascular network. The correspondence between iris microvascular permeability to FITC-albumin and the pattern of αSMA distribution and MCs coverage adds to the understanding of the elements comprising the blood-aqueous barrier with implications for the bio-mechanics of iris volume change.


Assuntos
Barreira Hematoaquosa , Iris , Suínos , Animais , Iris/metabolismo , Pupila , Humor Aquoso/metabolismo , Permeabilidade Capilar
3.
Exp Eye Res ; 228: 109386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657697

RESUMO

We have previously reported that porcine retinal veins can be contracted by vasoactive factors such as endothelin-1, but it is still unknown which cells play the major role in such contraction responses. This study seeks to confirm whether retinal vein endothelial cells play a significant role in the endothelin-1 induced contraction of porcine retinal veins. This is a novel study which provides confirmation of the endothelial cells' ability to contract retinal veins using a live vessel preparation. Retinal veins were isolated from porcine retina and cannulated for perfusion. The vessels were exposed to extraluminal delivery of endothelin-1 (10-8 M) and change in vessel diameter recorded automatically every 2 s. A phase contrast objective lens was also used to capture images of the endothelial cell morphometries. The length, width, area, and perimeter were assessed. In addition, vein histology and immuno-labeling for contractile proteins was performed. With 10-8 M endothelin-1 contractions to 63.6% of baseline were seen. The polygonal shape of the endothelial cells under normal tone became spindle-like after contraction. The area, width, perimeter and length were significantly reduced by 54.8%, 48.1%, 28.5% and 10.5% respectively. Three contractile proteins, myosin, calponin and alpha-SMA were found in retinal vein endothelial cells. Retinal vein endothelial cells contain contractile proteins and can be contracted by endothelin-1 administration. Such contractile capability may be important in regulating retinal perfusion but could also be a factor in the pathogenesis of retinal vascular diseases such as retinal vein occlusion. As far as we are aware, this is the first study on living isolated veins to confirm that endothelial cells contribute to the endothelin-1 induced contraction.


Assuntos
Artéria Retiniana , Veia Retiniana , Suínos , Animais , Endotelina-1 , Células Endoteliais , Artéria Retiniana/fisiologia , Endotélio Vascular , Proteínas Contráteis , Contração Muscular , Endotelinas/farmacologia
4.
Exp Eye Res ; 172: 36-44, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29608905

RESUMO

We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells.


Assuntos
Corioide/irrigação sanguínea , Proteínas do Citoesqueleto/metabolismo , Endotélio Vascular/citologia , Músculo Liso Vascular/citologia , Tirosina/metabolismo , Veias/citologia , Actinas/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Claudina-5/metabolismo , Endotélio Vascular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Microscopia Confocal , Músculo Liso Vascular/metabolismo , Fosforilação , Suínos , Veias/metabolismo
5.
Exp Eye Res ; 140: 106-116, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26335631

RESUMO

Recently we reported studies of the iris microvasculature and its endothelial cells using intra-luminal micro-perfusion, fixation, and silver staining, suggesting that the iris vascular endothelium may be crucial for maintaining homeostasis in the ocular anterior segment. Here we present information regarding the intracellular structure and cell junctions of the iris endothelium. Thirty-seven porcine eyes were used for this study. The temporal long posterior ciliary artery was cannulated to assess the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining with phalloidin for intracellular cytoskeleton f-actin, and with antibodies against claudin-5 and VE-cadherin for junction proteins. Nuclei were counterstained with Hoechst. The iris was flat-mounted for confocal imaging. The iris microvasculature was studied for its distribution, branch orders and endothelial morphometrics with endothelial cell length measured for each vessel order. Our results showed that morphometrics of the iris microvasculature was comparable with our previous silver staining. Abundant stress fibres and peripheral border staining were seen within the endothelial cells in larger arteries. An obvious decrease in cytoplasmic stress fibres was evident further downstream in the smaller arterioles, and they tended to be absent from capillaries and veins. Endothelial intercellular junctions throughout the iris vasculature were VE-cadherin and claudin-5 immuno-positive, indicating the presence of both adherent junctions and tight junctions between vascular endothelial cells throughout the iris microvasculature. Unevenness of claudin-5 staining was noted along the endothelial cell borders in almost every order of vessels, especially in veins and small arterioles. Our results suggest that significant heterogeneity of intracellular structure and junction proteins is present in different orders of the iris vasculature in addition to vascular diameter and shape of the endothelia. Detailed information of the topography and intracellular structure and junction proteins of the endothelium of the iris microvasculature combined with unique structural features of the iris may help us to further understand the physiological and pathogenic roles of the iris vasculature in relevant ocular diseases.


Assuntos
Actinas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Claudina-5/metabolismo , Citoesqueleto/metabolismo , Endotélio Vascular/citologia , Junções Intercelulares/metabolismo , Iris/irrigação sanguínea , Animais , Artérias Ciliares/metabolismo , Endotélio Vascular/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Microscopia Confocal , Microvasos , Sus scrofa
6.
Exp Eye Res ; 132: 249-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25680536

RESUMO

The roles of the iris microvasculature have been increasingly recognised in the pathogenesis of glaucoma and cataract; however limited information exists regarding the iris microvasculature and its endothelium. This study quantitatively assessed the iris microvascular network and its endothelium using intra-luminal micro-perfusion, fixation, and staining of the porcine iris. The temporal long posterior ciliary artery of 11 isolated porcine eyes was cannulated, perfusion-fixed and labelled using silver nitrate. The iris microvasculature was studied for its distribution, orders and endothelial morphometrics. The density of three layers of microvasculature was measured. Endothelial cell length and width were measured for each vessel order. The iris has an unusual vascular distribution which consisted of abundant large vessels in the middle of the iris stroma, branching over a relatively short distance to the microvasculature located in the superficial and deep stroma as well as the pupil edge. The average vascular density of the middle, superficial, and deep layers were 38.9 ± 1.93%, 10.9 ± 1.61% and 8.0 ± 0.79% respectively. Multiple orders of iris vessels (capillary, 6 orders of arteries, and 4 orders of veins) with relatively large capillary and input arteries (319.5 ± 25.6 µm) were found. Significant heterogeneity of vascular diameter and shape of the endothelia was revealed in different orders of the iris vasculature. Detailed information of topography and endothelium of the iris microvasculature combined with unique structural features of the iris may help us to further understand the physiological and pathogenic roles of the iris in relevant ocular diseases.


Assuntos
Células Endoteliais/citologia , Iris/irrigação sanguínea , Microvasos/anatomia & histologia , Análise de Variância , Animais , Iris/citologia , Microcirculação , Microvasos/citologia , Suínos
7.
Microvasc Res ; 94: 64-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24858052

RESUMO

PURPOSE: We have previously reported significant phenotype heterogeneity in the vortex vein system. This study is to quantify the age-related change of such endothelial phenotype heterogeneity. METHOD: The inferior temporal vortex vein system of 10 eyes from 7 young donors (30±4.1 years) and 9 eyes from 6 aged (72±4.7 years) donors were dissected after perfusion fixation and labeled for f-actin and nucleic acid. Confocal images of endothelial cells were obtained from nine anatomic regions and measurements made of the cell and nucleus sizes. The results were compared between the two age groups. RESULTS: Similar regional endothelial heterogeneity was observed in both age groups through the different regions of the vortex vein system. Age-related increase in endothelial cell area was observed in all the study regions. Age-associated regional differences were also observed in the endothelial length, width, and nucleus parameters. Endothelial nuclei were also found to be located further downstream within the cell in aged donor eyes. CONCLUSION: Age related enlarged endothelial cells have been identified in this venous system, a likely indicator of senescence. The relationship between the endothelial senescence, regional endothelial phenotype change and endothelial dysfunction in possible pathological changes needs to be further defined.


Assuntos
Corioide/irrigação sanguínea , Células Endoteliais/citologia , Veias/patologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Núcleo Celular , Tamanho Celular , Senescência Celular , Citoesqueleto/fisiologia , Feminino , Humanos , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Pessoa de Meia-Idade , Perfusão , Fenótipo
8.
Exp Eye Res ; 129: 83-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25447563

RESUMO

This study aims to provide evidence of the importance of radial peripapillary capillaries (RPCs) by quantitative study of the relationship between the RPCs and retinal nerve fibre layer (RNFL) in normal human donor eyes. The retinal microvasculature in eleven normal human donor eyes was perfused, fixed and labelled after cannulation of the central retinal artery. The retinas were dissected and whole-mounted for confocal microscopy. Six study regions were taken radially from the edge of the optic disc. RPCs from the optic disc edge to a radial distance up to 2.5 mm were imaged and their diameters, inter-capillary distance and volume occupation measured. These were correlated with the study region as well as thickness of the RNFL. It was found that the pooled average diameter of the RPCs in the first 2.5 mm from the optic disk was 8.9 µm. Significant differences in capillary diameter were present in the six regions, with larger diameter RPCs in the superior, inferior and nasal regions, and significantly smaller diameter in the temporal region. RPCs in the arcuate fibre regions extend the furthest from the optic disc, maintained a close inter-capillary distance for a longer distance than other regions, and have the highest RPCs volume occupancy. The RPCs volume was generally correlated with RNFL thickness. In conclusion, a close correlation between RNFL and RPCs presence has been demonstrated which is supportive of their functional reliance/co-dependence. The significantly smaller temporal RPCs may be a result of the greater presence of RPCs in the two bordering arcuate fibre regions and therefore a richer availability of nutrients diffusing from these two regions.


Assuntos
Capilares/citologia , Disco Óptico/irrigação sanguínea , Células Ganglionares da Retina/citologia , Adolescente , Adulto , Cadáver , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Fibras Nervosas , Valores de Referência , Tomografia de Coerência Óptica/métodos , Adulto Jovem
9.
Exp Eye Res ; 121: 11-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24560677

RESUMO

Retinal ganglion cell (RGC) axonal structure and function in the optic nerve head (ONH) is predominantly supported by astrocytes and capillaries. There is good experimental evidence to demonstrate that RGC axons are perturbed in a non-uniform manner following ONH injury and it is likely that the pattern of RGC axonal modification bears some correlation with the quantitative properties of astrocytes and capillaries within laminar compartments. Although there have been some excellent topographic studies concerning glial and microvascular networks in the ONH our knowledge regarding the quantitative properties of these structures are limited. This report is an in-depth quantitative, structural analysis of astrocytes and capillaries in the pre laminar, lamina cribrosa and post laminar compartments of the ONH. 49 optic nerves from human (n = 10), pig (n = 12), horse (n = 6), rat (n = 11) and rabbit (n = 10) eyes are studied. Immunohistochemical and high-magnification confocal microscopy techniques are used to co-localise astrocytes, capillaries and nuclei in the mid-portion of the optic nerve. Quantitative methodology is used to determine the area occupied by astrocyte processes, microglia processes, nuclei density and the area occupied by capillaries in each laminar compartment. Comparisons are made within and between species. Relationships between ONH histomorphometry and astrocyte-capillary constitution are also explored. This study demonstrates that there are significant differences in the quantitative properties of capillaries and astrocytes between the laminar compartments of the human ONH. Astrocyte processes occupied the greatest area in the lamina cribrosa compartment of the human ONH implicating it as an area of great metabolic demands. Microglia were found to occupy only a small proportion of tissue in the rat, rabbit and pig optic nerve suggesting that the astrocyte is the predominant glia cell type in the optic nerve. This study also demonstrates that there is significant uniformity, with respect to astrocyte and capillary constitution, in the post laminar region of species with an unmyelinated anterior optic nerve. This implicates an important role served by oligodendrocytes and myelin in governing the structural characteristics of the post laminar optic nerve. Finally, this study demonstrates that eyes with similar lamina cribrosa structure do not necessarily share an identical cellular constitution with respect to astrocytes. The quantitative properties of astrocytes in the pre laminar and lamina cribrosa regions of the rat, which has a rudimentary lamina cribrosa with only a few collagenous beams, shared more similarities to the human eye than the pig or horse. The quantitative properties of astrocytes and capillaries in the laminar compartments of the ONH provide a basis for understanding the pathogenic mechanisms that are involved in diseases such as glaucoma and ischemic optic neuropathy. The findings in this study also provide valuable information about the distinct advantages of different animal models for studying human optic nerve diseases. Utilisation of structural data provided in this report together with emerging in vivo technology may potentially permit the early identification of RGC axonal injury by quantifying changes in ONH capillaries and astrocytes.


Assuntos
Astrócitos/citologia , Disco Óptico/irrigação sanguínea , Nervo Óptico/citologia , Adulto , Animais , Astrócitos/metabolismo , Axônios , Capilares/anatomia & histologia , Fator VII/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Proteína Glial Fibrilar Ácida/metabolismo , Cavalos , Humanos , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Nervo Óptico/metabolismo , Coelhos , Ratos , Ratos Endogâmicos BN , Células Ganglionares da Retina/citologia , Sus scrofa , Adulto Jovem
10.
Sci Rep ; 14(1): 6126, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480842

RESUMO

We demonstrate an adaptation of deep learning for label-free imaging of the micro-scale lymphatic vessels and aqueous veins in the eye using optical coherence tomography (OCT). The proposed deep learning-based OCT lymphangiography (DL-OCTL) method was trained, validated and tested, using OCT scans (23 volumetric scans comprising 19,736 B-scans) from 11 fresh ex vivo porcine eyes with the corresponding vessel labels generated by a conventional OCT lymphangiography (OCTL) method based on thresholding with attenuation compensation. Compared to conventional OCTL, the DL-OCTL method demonstrates comparable results for imaging lymphatics and aqueous veins in the eye, with an Intersection over Union value of 0.79 ± 0.071 (mean ± standard deviation). In addition, DL-OCTL mitigates the imaging artifacts in conventional OCTL where the OCT signal modelling was corrupted by the tissue heterogeneity, provides ~ 10 times faster processing based on a rough comparison and does not require OCT-related knowledge for correct implementation as in conventional OCTL. With these favorable features, DL-OCTL promises to improve the practicality of OCTL for label-free imaging of lymphatics and aqueous veins for preclinical and clinical imaging applications.


Assuntos
Aprendizado Profundo , Vasos Linfáticos , Animais , Suínos , Tomografia de Coerência Óptica/métodos , Olho , Vasos Linfáticos/diagnóstico por imagem , Linfografia/métodos
11.
Microvasc Res ; 89: 70-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23778200

RESUMO

PURPOSE: The aim of this study was to investigate whether region-dependent endothelial heterogeneity is present within the porcine vortex vein system. METHODS: The superior temporal vortex vein in young adult pig eyes were dissected out and cannulated. The intact vortex vein system down to the choroidal veins was then perfused with labels for f-actin and nucleic acid. The endothelial cells within the choroidal veins, pre-ampulla, anterior portion of the ampulla, mid-ampulla, posterior portion of the ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein regions were studied in detail using a confocal microscopy technique. The endothelial cell and nuclei length, width, area and perimeter were measured and compared between the different regions. RESULTS: Significant regional differences in the endothelial cell and nuclei length, width, area and perimeter were observed throughout the porcine vortex vein system. Most notably, very narrow and elongated endothelia were found in the post-ampulla region. A lack of smooth muscle cells was noted in the ampulla region compared to other regions. CONCLUSIONS: Heterogeneity in endothelial cell morphology is present throughout the porcine vortex vein system and there is a lack of smooth muscle cells in the ampulla region. This likely reflects the highly varied haemodynamic conditions and potential blood flow control mechanisms in different regions of the vortex vein system.


Assuntos
Corioide/irrigação sanguínea , Células Endoteliais/citologia , Veias/patologia , Animais , Antígenos CD/metabolismo , Artérias , Velocidade do Fluxo Sanguíneo , Caderinas/metabolismo , Núcleo Celular/metabolismo , Hemodinâmica , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Microscopia de Fluorescência , Modelos Animais , Resistência ao Cisalhamento , Estresse Mecânico , Suínos
12.
Exp Eye Res ; 115: 144-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872432

RESUMO

The vortex vein system is the drainage pathway for the choroidal circulation and serves an important function in the effective drainage of the exceptionally high blood flow from the choroidal circulation. As there are only 4-6 vortex veins, a large volume of blood must be drained from many choroidal veins into each individual vortex vein. The vortex vein system must also cope with passing through tissues of different rigidity and significant pressure gradient as it transverses from the intrao-cular to the extra-ocular compartments. However, little is known about how the vortex vein system works under such complex situations in both physiological and pathological condition. Endothelial cells play a vital role in other vascular systems, but they have not been studied in detail in the vortex vein system. The purpose of this study is to characterise the intracellular structures and morphology in both the intra-and extra-ocular regions of the human vortex vein system. We hypothesise the presence of endothelial phenotypic heterogeneity through the vortex vein system. The inferior temporal vortex vein system from human donor eyes were obtained and studied histologically using confocal microscopy. The f-actin cytoskeleton and nuclei were labelled using Alexa Fluor conjugated Phalloidin and YO-PRO-1. Eight regions of the vortex vein system were examined with the venous endothelium studied in detail with quantitative data obtained for endothelial cell and nuclei size and shape. Significant endothelial phenotypic heterogeneity was found throughout the vortex vein system with the most obvious differences observed between the ampulla and its downstream regions. Variation in the distribution pattern of smooth muscle cells, in particular the absence of smooth muscle cells around the ampulla, was noted. Our results suggest the presence of significantly different haemodynamic forces in different regions of the vortex vein system and indicate that the vortex vein system may play important roles in regulation of the choroidal circulation.


Assuntos
Corioide/irrigação sanguínea , Endotélio Vascular/citologia , Músculo Liso Vascular/citologia , Veias/citologia , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Forma Celular , Corantes , Proteínas do Citoesqueleto/metabolismo , Endotélio Vascular/metabolismo , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Microscopia Confocal , Músculo Liso Vascular/metabolismo , Fenótipo , Fluxo Sanguíneo Regional/fisiologia , Esclera/irrigação sanguínea , Doadores de Tecidos
13.
Exp Eye Res ; 111: 50-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23518407

RESUMO

Vascular comorbidities are inherently linked to the pathogenesis of central retinal artery occlusion (CRAO) and central retinal vein occlusion (CRVO). However, the endothelial-mediated pathogenic mechanisms that precede, and therefore modulate, luminal occlusion have not been clarified. The aim of this study was to delineate the pattern of endothelial morphometric alteration in the central retinal artery and vein in patients with vascular comorbidities. Eyes with a previous history of vascular occlusion were not included in this study in order to avoid the confounding effects of post-occlusion endothelial changes. This study also sought to determine if vascular comorbidities had a disparate effect on arterial and venous endothelium in the optic nerve head. Comparisons were made between 13 human eyes from patients with vascular comorbidities and 22 control eyes from patients with no known systemic disease. Novel micro-cannulation techniques developed in our laboratory were used to label the cytoskeleton and nuclei of endothelial cells in the central retinal artery and vein following which images were captured using confocal microscopy. Endothelial and nuclear morphometric parameters were quantified in different laminar regions of the optic nerve head. F-actin stress fibre expression was also quantified. Analysis of covariance was used to determine statistical differences between the two groups. Interestingly, age did not influence endothelial morphometry, nuclear morphometry or f-actin expression in central retinal vessels. There were also no arterial endothelial differences between control and disease groups in any laminar region. Endothelial f-actin stress fibre expression increased significantly in the central retinal vein in patients with vascular comorbidities. The greatest change in these eyes was found to occur at the posterior lamina cribrosa. Increased venous endothelial f-actin stress fibre expression may reflect vascular comorbid disease-induced alterations to hemodynamic properties and coagulation cascades in the central retinal vein. The posterior lamina may be an important site for thrombus formation in CRVO as venous endothelia in this region are most influenced by the presence of vascular comorbidities. The findings of this study suggest that the role of endothelial dysfunction in CRVO and CRAO pathogenesis could be different.


Assuntos
Doenças Cardiovasculares/epidemiologia , Endotélio Vascular/patologia , Disco Óptico/patologia , Oclusão da Veia Retiniana/epidemiologia , Oclusão da Veia Retiniana/patologia , Actinas/metabolismo , Adulto , Idoso , Aterosclerose/epidemiologia , Comorbidade , Complicações do Diabetes/epidemiologia , Dislipidemias/epidemiologia , Bancos de Olhos , Feminino , Humanos , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Oclusão da Artéria Retiniana/epidemiologia , Oclusão da Artéria Retiniana/patologia , Fumar/epidemiologia , Fibras de Estresse/patologia , Doadores de Tecidos , Adulto Jovem
14.
Prog Retin Eye Res ; 94: 101134, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37154065

RESUMO

The microcirculation plays a key role in delivering oxygen to and removing metabolic wastes from energy-intensive retinal neurons. Microvascular changes are a hallmark feature of diabetic retinopathy (DR), a major cause of irreversible vision loss globally. Early investigators have performed landmark studies characterising the pathologic manifestations of DR. Previous works have collectively informed us of the clinical stages of DR and the retinal manifestations associated with devastating vision loss. Since these reports, major advancements in histologic techniques coupled with three-dimensional image processing has facilitated a deeper understanding of the structural characteristics in the healthy and diseased retinal circulation. Furthermore, breakthroughs in high-resolution retinal imaging have facilitated clinical translation of histologic knowledge to detect and monitor progression of microcirculatory disturbances with greater precision. Isolated perfusion techniques have been applied to human donor eyes to further our understanding of the cytoarchitectural characteristics of the normal human retinal circulation as well as provide novel insights into the pathophysiology of DR. Histology has been used to validate emerging in vivo retinal imaging techniques such as optical coherence tomography angiography. This report provides an overview of our research on the human retinal microcirculation in the context of the current ophthalmic literature. We commence by proposing a standardised histologic lexicon for characterising the human retinal microcirculation and subsequently discuss the pathophysiologic mechanisms underlying key manifestations of DR, with a focus on microaneurysms and retinal ischaemia. The advantages and limitations of current retinal imaging modalities as determined using histologic validation are also presented. We conclude with an overview of the implications of our research and provide a perspective on future directions in DR research.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/patologia , Microcirculação , Angiofluoresceinografia/métodos , Vasos Retinianos/patologia , Retina , Tomografia de Coerência Óptica/métodos , Cegueira
15.
Sci Rep ; 13(1): 7550, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160984

RESUMO

An adequate blood supply to meet the energy demands is essential for any tissue, particularly for high energy demand tissues such as the retina. A critical question is: How is the dynamic match between neuronal demands and blood supply achieved? We present a quantitative assessment of temporal and spatial variations in perfusion in the macular capillary network in 10 healthy human subjects using a non-invasive and label-free imaging technique. The assessment is based on the calculation of the coefficient of variation (CoV) of the perfusion signal from arterioles, venules and capillaries from a sequence of optical coherence tomography angiography images centred on the fovea. Significant heterogeneity of the spatial and temporal variation was found within arterioles, venules and capillary networks. The CoV values of the capillaries and smallest vessels were significantly higher than that in the larger vessels. Our results demonstrate the presence of significant heterogeneity of spatial and temporal variation within each element of the macular microvasculature, particularly in the capillaries and finer vessels. Our findings suggest that the dynamic match between neuronal demands and blood supply is achieved by frequent alteration of local blood flow evidenced by capillary perfusion variations both spatially and temporally in the macular region.


Assuntos
Hemodinâmica , Macula Lutea , Humanos , Macula Lutea/diagnóstico por imagem , Fóvea Central , Retina , Veias
16.
Sci Rep ; 13(1): 18923, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919331

RESUMO

Microvascular dysfunction is the underlying pathological process in many systemic diseases. However, investigation into its pathogenesis is impeded by the accessibility and complexity of the microvasculature within different organs, particularly for the central nervous system. The retina as an extension of the cerebrum provides a glimpse into the brain through which the microvasculature can be observed. Two major questions remain unanswered: How do the microvessels regulate spatial and temporal delivery to satisfy the varying cellular demands, and how can we quantify blood perfusion in the 3D capillary network? Here, quantitative measurements of red blood cell (RBC) speed in each vessel in the field were made in the in vivo rat retinal capillary network using an ultrafast confocal technique with fluorescently labelled RBCs. Retinal RBC speed and number were found to vary remarkably between microvessels ranging from 215 to 6641 microns per second with significant variations spatially and temporally. Overall, the RBC speed was significantly faster in the microvessels in the superficial retina than in the deep retina (estimated marginal means of 2405 ± 238.2 µm/s, 1641 ± 173.0 µm/s respectively). These observations point to a highly dynamic nature of microvasculature that is specific to its immediate cellular environment and is constantly changing.


Assuntos
Microvasos , Retina , Ratos , Animais , Retina/diagnóstico por imagem , Microvasos/diagnóstico por imagem , Microvasos/fisiologia , Perfusão , Eritrócitos/fisiologia , Encéfalo/irrigação sanguínea , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/fisiologia
17.
Invest Ophthalmol Vis Sci ; 64(15): 22, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108688

RESUMO

Purpose: The purpose of this study was to determine posture-induced changes in arterial blood pressure (ABP), intraocular pressure (IOP), orbital pressure (Porb), intracranial pressure (ICP), and jugular vein pressure (JVP) at various tilt angles in an in vivo pig. Methods: Anesthetized and ventilated pigs (n = 8) were placed prone on a tiltable operating table. ABP, IOP, Porb, ICP, and JVP were monitored while the table was tilted at various angles between 15 degrees head up tilt (HUT) and 25 degrees head down tilt (HDT) either in stepwise changes (5 degrees per step) or continuously. The mean pressure was calculated from digitized pressure waveforms from each compartment. For stepwise changes in tilt angle the pressures were plotted as a function of tilt angle. For continuous tilt changes, the pressures were plotted as a function of time. Results: In the case of stepwise changes, ABP remained relatively stable whilst IOP, Porb, ICP, and JVP demonstrated significant differences between most angles (typically P < 0.0001). The difference was greatest for IOP (P < 0.0001) where the average IOP increased from 13.1 ± 1.23 mm Hg at 15 degrees HUT to 46.3 ± 2.03 mm Hg at 25 degrees HDT. The relationship between pressure and tilt angle was almost linear for ICP and JVP, and sigmoidal for IOP and Porb. Interestingly, the effect of changes in tilt angle occurred very rapidly, within a few seconds. Conclusions: Our results in a pig model demonstrate that changes in posture (tilt angle) induce rapid changes in IOP, Porb, ICP, and JVP, with IOP affected most severely.


Assuntos
Pressão Arterial , Veias Jugulares , Suínos , Animais , Pressão Intracraniana , Postura , Pressão Intraocular
18.
Exp Eye Res ; 94(1): 90-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22138558

RESUMO

The purpose of this study was to quantify the topographic distribution of bulbar conjunctival microlymphatic vessels in the monkey. Sixteen eyes from 8 rhesus monkeys were used. Full thickness pieces of globe wall were excised from each quadrant. Cryosections were stained for 5'-nucleotidase, an enzyme histochemical staining for lymphatic vessels, or vascular endothelial growth factor receptor-3, an immunohistochemical marker for the identification of lymphatic endothelial cells, and then counterstained by hematoxylin. The remaining bulbar conjunctiva was dissected and flat mounted. The tissue was then processed with 5'-nucleotidase and alkaline phosphatase, an enzyme histochemical stain with higher activity in blood vessels. Microscope images were further analysed by image processing. The density of lymphatics, diameter of lymphatic vessels, and the size of the drainage zone of each blind end of the initial lymphatics were studied. Conjunctival lymphatics consisted of initial lymphatics and pre-collectors. The initial lymphatics with blind ends were predominately distributed just under the epithelium. The density of these lymphatics (∼50%) and the drainage zone area (∼0.81 mm(2)) was similar in each quadrant, with no difference in the limbus and fornix regions. The average diameter of lymphatic vessels in each quadrant ranged from 82 to 111 µm, and was greater in the superior and nasal regions. Larger calibre pre-collectors with valve-like structures were mostly located sub Tenon's membrane and predominantly located in the region mid-way between the limbus and fornix. There was a marked depth difference in initial lymphatic distribution, with the initial lymphatics mostly confined to the region between Tenon's membrane and the conjunctival epithelium. Detailed knowledge of the topographic distribution of conjunctival lymphatics have significant relevance to a better understanding of immunology, drug delivery, glaucoma filtration surgery, and tumour metastasis in the conjunctiva.


Assuntos
Túnica Conjuntiva/anatomia & histologia , Vasos Linfáticos/anatomia & histologia , 5'-Nucleotidase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Técnicas Imunoenzimáticas , Sistema Linfático/anatomia & histologia , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Macaca mulatta , Masculino , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Appl Opt ; 50(6): 876-85, 2011 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-21343967

RESUMO

Ultraviolet (UV) lasers have the capability to precisely remove tissue via ablation; however, due to strong absorption of the applicable portion the UV spectrum, their surgical use is currently limited to extraocular applications at the air/tissue boundary. Here we report the development and characterization of a fiber-optic laser delivery system capable of outputting high-fluence UV laser pulses to internal tissue surfaces. The system has been developed with a view to intraocular surgical applications and has been demonstrated to ablate ocular tissue at the fluid/tissue boundary. The fifth (213 nm) and fourth(266 nm) harmonics of a Nd:YAG laser were launched into optical fibers using a hollow glass taper to concentrate the beam. Standard and modified silica/silica optical fibers were used, all commercially available. The available energy and fluence as a function of optical fiber length was evaluated and maximized. The maximum fluence available to ablate tissue was affected by the wavelength dependence of the fiber transmission; this maximum fluence was greater for 266 nm pulses (8.4 J/cm2) than for 213 nm pulses (1.4 J/cm2). The type of silica/silica optical fiber used did not affect the transmission efficiency of 266 nm pulses, but transmission of 213 nm pulses was significantly greater through modified silica/silica optical fiber. The optical fiber transmission efficiency of 213 nm pulses decreased as a function of number of pulses transmitted, whereas the transmission efficiency of 266 nm radiation was unchanged. Single pulses have been used to ablate fresh porcine ocular tissue. In summary, we report a method for delivering the fifth (213 nm) and fourth (266 nm) harmonics of a Nd:YAG laser to the surface of immersed tissue, the reliability and stability of the system has been characterized, and proof of concept via tissue ablation of porcine ocular tissue demonstrates the potential for the intraocular surgical application of this technique.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Terapia a Laser/instrumentação , Lasers de Estado Sólido/uso terapêutico , Retina/cirurgia , Animais , Desenho de Equipamento , Vidro/química , Procedimentos Cirúrgicos Oftalmológicos/instrumentação , Dióxido de Silício/química , Software , Suínos , Raios Ultravioleta
20.
Transl Vis Sci Technol ; 10(1): 29, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520424

RESUMO

Purpose: To determine the fidelity of optical coherence tomography angiography (OCTA) techniques by direct comparison of the retinal capillary network images obtained from the same region as imaged by OCTA and high-resolution confocal microscope. Method: Ten porcine eyes were perfused with red blood cells for OCTA image acquisition from the area centralis and then perfusion-fixed, and the vessels were labeled for confocal imaging. Two approaches involving post-processing of two-dimensional projection images and vessel tracking on three dimensional image stacks were used to obtain quantitative measurements. Data collected include vessel density, length of visible vessel track, count of visible branch points, vessel track depth, vessel diameter, angle of vessel descent, and angle of dive for comparison and analysis. Results: Comparing vascular images acquired from OCTA and confocal microscopy, we found (1) a good representation of the larger caliber retinal vessels, (2) an underrepresentation of retinal microvessels smaller than 10 µm and branch points in all four retinal vascular plexuses, particularly the intermediate capillary plexus, (3) reduced visibility associated with an increase in the angle of descent, (4) a tendency to loss visibility of vessel track at a branch point or during a sharp dive, and (5) a reduction in visibility with increase in retinal depth on OCTA images. Conclusions: Current OCTA techniques can visualize the retinal capillary network, but some types of capillaries cannot be detected by OCTA, particularly in the middle to deeper layers. Translational Relevance: The information indicates the limitation in clinical use and scopes for improvement in the current OCTA technologies.


Assuntos
Vasos Retinianos , Tomografia de Coerência Óptica , Capilares/diagnóstico por imagem , Angiofluoresceinografia , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA