Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(4): 1172-1186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35037279

RESUMO

The counteractive effect of atmospheric CO2 (ca ) enrichment and drought stress on tree growth results in great uncertainty in the growth patterns of forest plantations in cold semi-arid regions. We analysed tree ring chronologies and carbon isotopes in Populus simonii plantations in cold semi-arid areas in northern China over the past four decades. We hypothesized that the hydraulic stress from drought would override the stimulating effect of increasing ca and temperature (T) on stem growth (basal area increment [BAI]). We found the stimulating effect of rising ca and T on the growth, indicated by continuous increase of intrinsic water-use efficiency in all stands and a positive correlation between T and BAI. However, these effects failed to alleviate the negative impacts of drought on tree growth. Concurrent acceleration of BAI reversed during the intensive drought episodes. Water stress resulted from inaccessibility of roots to deep soil water rather than from lack of precipitation, suggested by the decoupling of BAI from precipitation and vapour pressure deficit. Local soil water limitation might also cause greater stomatal regulation in declining trees, indicated by lower intercellular CO2 concentration. Thus, site-specific soil moisture conditions growth sensitivity to global warming resulting in site-specific decline episodes in drought-prone areas.


Assuntos
Populus , Dióxido de Carbono , Desidratação , Secas , Florestas , Solo , Temperatura , Árvores
2.
J Environ Sci (China) ; 81: 102-118, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30975314

RESUMO

Biological volatile organic compounds (BVOCs) have a large influence on atmospheric environmental quality, climate change and the carbon cycle. This study assesses the composition and diurnal variation in emission rates of BVOCs from Pinus tabuliformis, using an enclosure technique. Environmental parameters (temperature and light intensity) and physiological parameters (net photosynthetic rate, Pn; stomatal conductance, gs; intercellular CO2 concentration, Ci; and transpiration rate, Tr) that may affect emission behavior were continuously monitored. The 10 most abundant compound groups emitted by P. tabuliformis were classified by gas chromatography-mass spectrometry. The dominant monoterpenoid compounds emitted were α-pinene, ß-myrcene, α-farnesene and limonene. The diurnal emission rate of BVOCs changed with temperature and light intensity, with dynamic analysis of BVOCs emissions revealing that their emission rates were more affected by temperature than light. The variation in monoterpene emission rates was consistent with estimates of Pn, gs and Tr. Basal emission rates (at 30 °C,) of the main BVOCs ranged from 0.006 to 0.273 µg  -1/(hr g), while the basal ER standardization coefficients ranged from 0.049 to 0.144 °C-1. Overall, these results provide a detailed reference for the effective selection and configuration of tree species to effectively prevent and control atmospheric pollution.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Pinus/fisiologia , Compostos Orgânicos Voláteis/análise , Monoterpenos Acíclicos , Monoterpenos Bicíclicos , Monoterpenos/análise , Pinus/química , Sesquiterpenos/análise
3.
J Environ Sci (China) ; 27: 33-41, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25597660

RESUMO

Particulate matter diameter ≤ 2.5 µm (PM2.5) causes direct harm to human health. Finding forms of urban forest systems that with the ability to reduce the amount of particulate matter in air effectively is the aim of this study. Five commonly cultivated kinds of urban forest types were studied in Beijing city at three stages of leaf growth. Results show that the urban forest system is capable of storing and capturing dust from the air. The types of shrubs and broadleaf trees that have the ability to capture PM2.5 from the air are most effective when leaves have fully developed. In the leafless season, the conifer and mixed tree types are the most effective in removing dust from the air. For all kinds of forest types and stages of leaf growth, the PM2.5 concentration is highest in the morning but lower in the afternoon and evening. Grassland cannot control particles suspended in the air, but can reduce dust pollution caused by dust from the ground blown by the wind back into the air.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Florestas , Material Particulado/análise , Folhas de Planta/crescimento & desenvolvimento , Poluentes Atmosféricos/metabolismo , China , Ritmo Circadiano , Cidades , Poeira/análise , Pradaria , Tamanho da Partícula , Material Particulado/metabolismo , Folhas de Planta/metabolismo , Estações do Ano
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(4): 997-1000, 2015 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-26197590

RESUMO

In order to explore the variation of CO2 concentration and soil respiration in soil profile, the nondispersive infrared (NDIR) spectroscopy technique was applied to continually estimate the soil CO2 concentration in different soil layers (the humus horizon, A-, B-, C-horizon) in situ. The main instrument used in this experiment was silicon-based nondispersive infrared sensor, which could work in severe environment. We collected the Measurement value by NDIR spectroscopy technique throughout 2013. The values of soil carbon flux in different soil layers were calculated based on the model of gradient method and calibrated by measuring with an automated soil CO2 efflux system (LI-8100). The results showed that: a vertical gradient for the carbon dioxide concentration in soil profile was found, and the concentration was highest in the deepest soil horizon. Moreover, A linear correlation between the soil CO2 effluxes was calculated based on model and measurement, and the model prediction correlation coefficient was 0.9069, 0.7185, 0.8382, and 0.9030 in the H-, A-, B-, and C-horizon, respectively. The roots of mean square error (RMSE) were 0.2067, 0.1041, 0.0156, and 0.0096 in the H-, A-, B-, and C-horizon, respectively. These results suggest that the gradient method based on the NDIR spectroscopy technique can be successfully used to measure soil CO2 efflux in different soil layers, which reveal that diffusion and convection transport CO2 between the soil layers. It is a promising sensor for detecting CO2 concentration in soil profile, providing the basic data for calculating the global carbon in soil profile.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(6): 1615-8, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25358174

RESUMO

Estimating soil moisture conveniently and exactly is a hot issues in water resource monitoring among agriculture and forestry. Estimating soil moisture based on vegetation index has been recognized and applied widely. 8 vegetation indexes were figured out based on the hyper-spectral data measured by portable spectrometer. The higher correlation indexes among 8 vegetation indexes and surface vegetation temperature were selected by Gray Relative Analysis method (GRA). Then, these selected indexes were analyzed using Multiple Linear Regression to establish soil moisture estimation model based on multiple vegetation indexes, and the model accuracy was evaluated. The accuracy evaluation indicated that the fitting was satisfied and the significance was 0.000 (P < 0.001). High correlation was turned out between estimated and measured soil moisture with R2 reached 0.636 1 and RMSE 2.149 9. This method introduced multiple vegetation indexes into soil water content estimating over micro scale by non-contact measuring method using portable spectrometer. The exact estimation could be an appropriate replacement for remote sensing inversion and direct measurement. The model could estimate soil moisture quickly and accurately, and provide theory and technology reference for water resource management in agriculture and forestry.


Assuntos
Plantas , Solo , Água , Agricultura , Agricultura Florestal , Modelos Teóricos , Temperatura
6.
Sci Total Environ ; 945: 174005, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38889815

RESUMO

Predicting future land use changes and assessing carbon storage remain challenging. Nowadays, how nature and socioeconomics drive changes in carbon storage is a hot topic in research. In this study, through the projection of land use type and the integration of the PLUS, Integrated Valuation of Ecosystem Services and Trade-offs (InVEST), and Geodetector models, we constructed a framework for assessing carbon storage in different land use scenarios. Utilizing this framework, it is possible to project land use change and estimate carbon storage based on different development scenarios. We applied the framework to the Yili Tianshan region and identified the main driving forces for carbon storage change. Further, we estimated the carbon storage in the Yili Tianshan region in 2035 under four scenarios (RE, NE, EP, and CLP). The results showed the following: 1) Between 1990 and 2020, there was an increase in the forest area and water bodies in the Yili-Tianshan region, mainly from bare land. 2) As shown on the time scale, carbon storage increases in the Yili-Tianshan region with a W-shaped fluctuation by converting grasslands and bare land into forests. On a spatial scale, the carbon storage was lower in the center and higher on both sides in the Yili-Tianshan region. 3) In 2035- RE, 2035-ND, and 2035-EP scenarios, the carbon storage was increased by 4.30 Tg, 6.67 Tg, and 12.08 Tg; in the 2035-CLP scenario, it was decreased by 14.63 Tg. The Yili-Tianshan region experienced a notable rise in carbon storage under the 2035-EP scenario compared to the other three scenarios. 4) Soil type played a significant role in the spatial differentiation of carbon storage in Yili-Tianshan (q value 0.5958), followed by population density (0.5394). The changes in carbon storage in the Yili-Tianshan region are the result of synergistic effects of multiple factors, in which the soil type∩soil erosion intensity are the most important. This research could provide a reference method for improving regional carbon storage.

7.
Huan Jing Ke Xue ; 45(3): 1586-1597, 2024 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-38471872

RESUMO

The ecological environment along the Qinghai-Xizang highway is an important part of the construction of the ecological civilization in the Xizang region, and current research generally suffers from difficulties in data acquisition, low timeliness, and failure to consider the unique "alpine saline" environmental conditions in the study area due to the unique geographical environment of the Qinghai-Xizang plateau. Based on the GEE platform and the unique geographical environment of the study area, the remote sensing ecological index (RSEI) was improved, and a new saline remote sensing ecological index (SRSEI) applicable to the alpine saline region was constructed by using principal component analysis as an ecological environment quality evaluation index. The spatial distribution pattern and temporal variation trend of ecological environment quality along the Qinghai-Xizang Highway Nagqu-Amdo section were analyzed at multiple spatial and temporal scales using the ArcGIS 10.3 platform and geographic probes, and the driving mechanisms of eight control factors, including natural and human-made, on the spatial and temporal changes in SRSEI were investigated. The results showed that:① compared with RSEI, SRSEI was more sensitive to vegetation and had a stronger discriminatory ability in areas with sparse vegetation and severe salinization, which is suitable for ecological quality evaluation in alpine saline areas. ② The spatial scale of ecological environment quality in the study area had obvious geographical differentiation, and the areas with poor ecological quality were mainly concentrated in the northern Amdo County, whereas the areas with excellent and good quality grades were mainly distributed in the central-western and southeastern Nagqu areas. On the temporal scale, the ecological environment of the study area as a whole showed an improvement trend over 32 years, and the vegetation cover in the central-western and southeastern areas increased significantly, which had a strong improvement effect on the ecological environment. The improvement area was 1 425.98 km2, accounting for 99.82%. The mean value of SRSEI was 0.49, with an overall fluctuating upward trend and an average increase of 0.015 7 a-1. ③ The land use pattern was the most driving influence factor in the change of ecological environment quality in the study area, with an average q value of 0.157 6 over multiple years, and the influence of environmental factors was low. The multi-factor interaction results showed that the ecological environment in the study area was the result of multiple factors acting together, all factors had synergistic enhancement under the interaction, the influence of human factors was gradually increasing, and the interaction of the net primary productivity (NPP) of vegetation and land use pattern was the main interactive control factor of ecological environment quality in the study area. This study can provide a theoretical basis for ecological environmental protection and sustainable development along the Nagqu to Amdo section.


Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Humanos , Monitoramento Ambiental , Conservação dos Recursos Naturais , Análise de Componente Principal , China
8.
Ying Yong Sheng Tai Xue Bao ; 35(4): 886-896, 2024 Apr 18.
Artigo em Zh | MEDLINE | ID: mdl-38884223

RESUMO

Elucidating the seasonal patterns of water sources for dominant species in the sub-tropical humid mountainous forest, analyzing the eco-hydrological complementarity and competition mechanisms among coexisting species, investigating the responses of plant water utilization to precipitation, could provide a theoretical basis for vegetation restoration and management. Based on the stable hydrogen and oxygen isotope technique, we analyzed the δ2H and δ18O characteristics of precipitation, xylem water from Pinus massoniana and Quercus variabilis, and soil water from 0-100 cm depth in Mount Lushan, China. The MixSIAR model, Levins index, and PS index were used to calculate the relative contribution rate of each water source, the hydrological niche breadth, and niche overlap of P. massoniana and Q. variabilis. The results showed that, in the wet season (March to July), P. massoniana primarily utilized soil water from the 0-20 cm and 20-40 cm depths, while Q. variabilis primarily utilized that from the 20-40 cm and 40-60 cm depths. During the dry season (August to September), P. massoniana and Q. variabilis utilized 40-60 cm and 60-80 cm of soil water, respectively, resulting in an increase in the depth of water absorption. In the early growing season (March to April) and the late growing season (September), there was a high hydrological niche overlap between P. massoniana and Q. variabilis, resulting in intensitive water competition. In the middle of the growing season (May to August), the water source was adequately allocated, and the hydrolo-gical niche was segregated to meet the high transpiration demand. Q. variabilis primarily utilized soil water from a depth of 60-80 cm and 60-80 cm before a precipitation event, and from a depth of 0-20 cm and 20-40 cm after the event. In contrast, P. massoniana primarily utilized soil water from a depth of 0-20 cm and 20-40 cm both before and after a precipitation event. In conclusion, water utilization patterns of P. massoniana and Q. variabilis exhibited a seasonal trend, with shallow water uptake during the rainy season and deep water uptake during the dry season. These species are capable of efficiently allocating water resources during the peak growth season, and their root systems actively respond to change in soil moisture level. They have strong adaptability to extreme precipitation events and exhibit remarkable water conservation capabilities.


Assuntos
Florestas , Pinus , Quercus , Chuva , Estações do Ano , Água , China , Água/análise , Água/metabolismo , Quercus/crescimento & desenvolvimento , Pinus/crescimento & desenvolvimento , Ecossistema , Solo/química
9.
Huan Jing Ke Xue ; 44(3): 1636-1645, 2023 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-36922224

RESUMO

In order to understand the heavy metal pollution of the industrial and mining area in northern Guangdong Province, topsoil samples (0-20 cm) from 209 sites in study area were collected, and the concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were analyzed. The source and distribution characteristics of Cd, Cr, Hg, Ni, Pb, As, Cu, and Zn in soil samples were analyzed using the geographic information system (GIS) and principal component analysis (PCA), and the geo-accumulation index and potential ecological hazard index were used to evaluate their pollution status and ecological risk. The results showed that:① Except Ni, all seven heavy metal elements exceeded the national soil background value but were below the pollution risk screening value. The soil environment as a whole was relatively clean. ② The spatial distribution of heavy metals in soil differed. The contents of As and Pb showed northwest-southeast zonal distribution. The contents of Cd, Cu, Hg, and Zn generally decreased from the middle to the surrounding, which was consistent with the industrial and mining enterprise locations. However, the spatial distribution of Cr and Ni had no direct relationship with the location of pollution sources such as industrial enterprises. ③ The eight heavy metals could be identified as three principal components (PCs). PC1 (Cd, Cu, Pb, and Zn) was mainly affected by human activities such as lead-zinc deposit dressing, traffic emissions, and agricultural production. However, PC2 (Cr and Ni) was a natural source, mainly affected by soil parent material. In addition, PC3 (As and Hg) was mainly affected by industrial activities such as non-ferrous metal smelting and thermal power generation. ④ According to the geo-accumulation index method, the risk degree of the eight heavy metals was:Cd>As>Zn>Hg>Pb>Cu>Cr=Ni. The contents of Cr and Ni in soil were at a no-risk level; the contents of As, Cu, Hg, Pb, and Zn were at a low-risk level; and the content of Cd was at a high-risk level. Most potential ecological hazards for single elements in the study area were at a mild risk level. In contrast, a small proportion of the surface soils in areas of intense industrial activity were subject to substantial levels of heavy metal stress and require further attention.

10.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1505-1510, 2022 Jun.
Artigo em Zh | MEDLINE | ID: mdl-35729126

RESUMO

Uncovering the variations of short-term water-use efficiency (WUEp) at whole-plant level in response to CO2 concentration (Ca) and soil water content (SWC) can improve the understanding of plant survival strategies under climate change. In this study, Platycladus orientalis saplings were cultured in simulated climate chambers.There were totally 15 treatments, including Ca of 400 (C400), 600 (C600) and 800 (C800) µmol·mol-1 and SWC of 35%-45% field water holding capacity (FC), 50%-60%FC, 60%-70%FC, 70%-80%FC and 95%-100%FC. The WUEp was measured by mini-lysimeters, weighting method, and static assimilation chamber. The results showed that both daytime (0.12-1.87 mol·h-1) and nighttime transpiration rates (0.01-0.16 mol·h-1) at whole-plant level reached the maximum at C400×70%-80%FC, while the whole-plant daytime net photosynthetic rate (2.12-22.10 mmol·h-1) reached the maximum at C800×70%-80%FC. In contrast, nighttime respiration rate (0.84-4.41 mmol·h-1) increased with increasing SWC, but decreased with increasing of Ca, reaching the maximum at C400×95%-100%FC. For WUEp (5.37-24.35 mmol·mol-1), it reached the maximum at C800×50%-60%FC, indicating that plants could use less water and fixed more carbon by adjusting adaptation strategies under high Ca and drought conditions. In addition, leaf instantaneous water-use efficiency was a good predictor of WUEP when the canopy structure was similar.


Assuntos
Solo , Água , Dióxido de Carbono/análise , Secas , Fotossíntese/fisiologia , Folhas de Planta/química , Solo/química , Água/análise
11.
Sci Total Environ ; 754: 142157, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32920406

RESUMO

The complex interactions between climate and watershed characteristics lead to diverse annual runoff responses. Understanding the mechanism by which different climatic and watershed factors affect annual runoff is helpful in understanding the resulting changes in the hydrological process. In this study, the characteristics of 73 watersheds were analyzed. The basins were divided into three categories according to their climatic regions: temperate continental climate (n = 7); temperate monsoon climate(n = 36); and subtropical monsoon climate(n = 30). Correlation analysis, linear regression, and path analysis were used to quantify the effects of selected watershed characteristics and meteorological conditions on long-term runoff. Results showed that the average annual runoff coefficient was strongly correlated with basin area, showing a scale effect. The average annual runoff depth was strongly positively correlated with precipitation for the all watersheds. As the drought index (DI, the ratio of annual evaporation capacity to annual precipitation) increased, the annual runoff depth decreased logarithmically. The average annual rainfall and runoff depth of watersheds in the subtropical monsoon climate zone were significantly higher than those in other climatic zones, and there was no significant difference in potential evaporation between the temperate monsoon climate and subtropical monsoon climate zones. With increases in both the drought index (Ep/P) and moisture index (E/P), the vegetation distribution in the basin showed an increasing trend in farmland area and decreasing trend in forest area. Path analysis showed that rainfall had a positive effect on annual average runoff depth (ranging from 31 to 62%) while actual evapotranspiration had a negative impact (ranging from 17 to 47%). For all basins, a negative effect (13-25%) of basin area on runoff depth was observed, while forestland area had a positive effect (7-39%) on runoff depth. This study further quantified the effects of climatic and geographical factors on the long-term water balance in different climatic regions.

12.
Ying Yong Sheng Tai Xue Bao ; 32(6): 1971-1979, 2021 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34212601

RESUMO

To fully understand the changes in the evapotranspiration components in forest ecosystem and their contribution to evapotranspiration at daily scale, we used the hypothesis theory of isotopic steady state and non-steady state combined with the water isotope analyzer system to quantitatively split and compare the evapotranspiration components of Platycladus orientalis ecosystem during the growing season. Results showed that the 18O of water from different sources during the four mea-surement days (August 5, 8, 10, 11, 2016) all showed surface soil water and oxygen isotope composition (δS) > branch water and oxygen isotope composition (δX) > atmospheric water vapor oxygen isotopes composition (δV), with obvious differences due to the isotope fractionation. Oxygen isotopes composition of soil evaporated water vapor (δE) was between -26.89‰ï½ž-59.68‰ at the daily scale, showing a pattern of first rising and then decreasing. The oxygen isotopic composition of evapotranspiration water vapor in forest ecosystem (δET) was between -15.99‰ï½ž-10.04‰. The oxygen isotopic composition of transpired water vapor under steady state(δT-ISS) was between -12.10‰ï½ž-9.51‰. The oxygen isotopic composition of transpired water vapor under non-steady state (δT-NSS) was between -13.02‰ï½ž-7.23‰. δET and δT-NSS had the same changing trend throughout the day at the daily scale, while the trend of δET, δT-ISS and δT-NSS was approximately the same during 11:00-17:00. In general, the contribution rate of plant transpiration to total evapotranspiration showed that FT-ISS was between 79.1%-98.7%, and FT-NSS was between 88.7%-93.7%. Our results suggested that water consumption through soil evaporation was far less than that of vegetation transpiration in the study area, and that vegetation transpiration dominated forest evapotranspiration.


Assuntos
Ecossistema , Transpiração Vegetal , Isótopos de Oxigênio , Vapor , Água
13.
Ying Yong Sheng Tai Xue Bao ; 32(8): 2886-2894, 2021 Aug.
Artigo em Zh | MEDLINE | ID: mdl-34664462

RESUMO

Rainfall intensity, slope length, and slope gradient are the important factors affecting runoff and sediment yield. In order to quantitatively analyze the effects of rainfall intensity, slope length, and slope gradient on the erosion process of Ansai loess slope in loess hilly and gully region, we analyzed the variation of runoff and sediment yield on Ansai loess with two slope lengths (5, 10 m), three slopes (5°, 10°, 15°) and two rainfall intensities (60, 90 mm·h-1) in an indoor simulated rainfall experiment. The results showed that the initial runoff generation time decreased with the increases of slope length, though the overall change was not significant. The initial runoff generation time decreased with the increases of rainfall intensity. Compared with the intensity of 60 mm·h-1, the initial runoff generation time decreased by 5.7-18 min under the intensity of 90 mm·h-1. Among them, the runoff initiation time on the slope of 10° was the fastest. With the duration of rainfall, runoff yield rate increased rapidly at first, and then gradually fluctuated around a certain value. The sediment yield rate increased rapidly in a short period of time at the initial stage of runoff generation, and then decreased after reaching the maximum, and being gradua-lly stable. The rates of runoff and sediment yield increased with the increases of slope length and rainfall intensity, but the law of change with slope was not obvious. With the increases of rainfall intensity, slope length and gradient, the total sediment yield increased accordingly. Under the rainfall intensity of 90 mm·h-1, the slope surface with the length of 10 m and slope of 15° generated rill, leading to the highest total erosion amount (11885.66 g). Under the rainfall intensity of 60 mm·h-1, the erosion amount per unit area decreased with the increases of slope length, and there was a critical erosion slope length in 5-10 m slope section. Slope length, slope and rainfall intensity all played a promoting role in runoff process. Rainfall intensity, slope length, and their interaction contributed more to runoff yield rate and total erosion amount. Rainfall intensity contributed the most to runoff yield rate, with a contribution rate of 49.8%. The contribution rate of slope length to the total erosion was the largest, which reached 37.8%.


Assuntos
Chuva , Movimentos da Água , China , Sedimentos Geológicos , Solo
14.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2347-2354, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34313051

RESUMO

The complex terrain and poor climatic conditions in Bashang area of Hebei Province result in water and soil loss and geological disasters, which pose a serious threat to ecological safety in North China. In order to improve local environmental quality, barren-resistant and fast-growing tree species such as Pinus sylvestris var. mongolica and Larix gmelinii are planted with large areas. However, unreasonable plantation density will lead to inefficient utilization of rainfall and intensify the conflict between forest and water. In this study, we analyzed the effects of five thinning intensities (0, 20%, 40%, 60%, 80%) of P. sylvestris var. mongolica plantation on herbs, litter, soil and overall water-holding capacity, with the aim to provide scientific basis for management of P. sylvestris var. mongolica. The results showed that water-holding rate of herb varied from 47.7% to 90.7%, and that the water-holding capacity of herb decreased with increasing thinning intensity. When the thinning intensity was less than 40%, water-holding capacity decreased slowly, and then decreased rapidly. With the increase of thinning intensity, natural water-holding rate and maximum water-holding rate of undecomposed layer and semi-decomposed layer decreased gradually, with the effective water-holding rate being 60%>40%>20%>80%>0, and the water-holding capacity of semi-decomposed layer being better than that of undecomposed layer. The water-holding capacity of soil decreased gradually with the increases of thinning intensity. Thinning intensity less than 40% promoted water holding capacity. Under different thinning intensities, the total water-holding rate of understory was 8.3%-14.3%, with an order of 20%>0>40%>60%>80%. In view of understory all layers and overall changes, the thinning intensity at 20% in the study area could effectively improve the understory water-holding capacity and achieve better ecological benefits.


Assuntos
Pinus sylvestris , Pinus , China , Florestas , Solo , Água/análise
15.
Ambio ; 39(4): 279-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20799677

RESUMO

Traditional approaches to ecosystem restoration have considered afforestation to be an important tool. To alleviate land degradation in China, the Chinese government has therefore invested huge amounts of money in planting trees. However, the results of more than half a century of large-scale afforestation in arid and semi-arid China have shown that when the trees are not adapted to the local environment, the policy does not improve the environment, and may instead increase environmental degradation. When precipitation is lower than potential evaporation, surface soil moisture typically cannot sustain forest vegetation, and shrubs or steppe species replace the forest to form a sustainable natural ecosystem that exists in a stable equilibrium with the available water supply. The climate of much of northwestern China appears to be unsuitable for afforestation owing to the extremely low rainfall. Although some small-scale or short-term afforestation efforts have succeeded in this region, many of the resulting forests have died or degraded over longer periods, so policymakers must understand that these small-scale or short-term results do not support an inflexible policy of large-scale afforestation throughout arid and semi-arid northwestern China. Rather than focusing solely on afforestation, it would be more effective to attempt to recreate natural ecosystems that are better adapted to local environments and that thus provide a better chance of sustainable, long-term rehabilitation.


Assuntos
Clima Desértico , Recuperação e Remediação Ambiental , Agricultura Florestal , China , Ecossistema , Recuperação e Remediação Ambiental/legislação & jurisprudência , Política Pública
16.
Environ Pollut ; 259: 113955, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023800

RESUMO

Biogenic volatile organic compounds (BVOCs) play essential roles in tropospheric chemistry, on both regional and global scales. The emissions of large quantities of species-specific BVOC depend not only on environmental (temperature, T; photosynthetically active radiation, PAR), but also physiological parameters (i.e. net photosynthetic rate, Pn; transpiration rate, Tr; stomatal conductance, gs and intercellular CO2 concentration, Ci). Here, isoprene, monoterpene and sesquiterpene emissions were determined from five dominant mature woody tree species in northern China, which are two evergreen conifers (Pinus tabuliformis and Platycladus orientalis) and three broad-leaved deciduous trees (Quercus variabilis, Populus tomentosa and Robinia pseudoacacia). A dynamic enclosure technique combined with GC-MS was used to sample BVOCs and analyse their fractional composition at daily and annual scales. The diurnal data showed that both isoprene and monoterpene emissions increased with increasing temperature, and reached their maximum emission rates in the peak of growing season for both coniferous and broad-leaved species. The emissions of individual compound within the monoterpenes and sesquiterpenes were statistically correlated with each other for all species. Furthermore, some oxygenated monoterpene emissions were highly correlated to sesquiterpenes in all tree species. Linking BVOC emissions to environmental and leaf physiological parameters exhibited that monoterpene emissions were linearly and positively correlated to the variation of T, PAR, Pn and Tr, while their relationship to gs and Ci is more complex. Collectively, these findings provided important information for improving current model estimations in terms of the linkage between BVOC emissions and plant physiological traits. The data presented in this study can be used to update emission capacity used in models, as this is the first time of reporting BVOC emissions from five dominant species in this region. The whole-year measurement of leaf-level BVOCs can also advance our understanding of seasonal variation in BVOC emissions.


Assuntos
Poluentes Atmosféricos/análise , Plantas , Compostos Orgânicos Voláteis/análise , China , Monoterpenos , Estações do Ano , Árvores
17.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1844-1850, 2020 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34494735

RESUMO

Based on stable carbon isotope, we quantitatively partitioned ecosystem respiration in a Platycladus orientalis forest in the west mountainous area of Beijing. Results from this study could lay the foundation for carbon exchange research in forest ecosystems of this region. The spectroscopy technique was used to continuously measure CO2 concentrations and δ13C values at different height of the forest. Soil and branch chambers were used for measuring nighttime δ13C values in underground and aboveground respiration, and then the proportions of respiration components were calculated. Combined with soil respiration efflux measurement, ecosystem respiration was then quantitatively partitioned. The results showed that δ13C values of respiratory components fluctuated, which ranged from -31.74‰ to -23.33‰ in aboveground respiration of plants and from -32.11‰ to -27.74‰ in soil respiration. The δ13C values of ecosystem respiration was at the middle of those ranges. Soil respiration averaged 1.70 µmol·m-2·s-1 at night, accounting for 47%-91% of ecosystem respiration. Aboveground respiration averaged 0.72 µmol·m-2·s-1, contributing less to ecosystem respiration. Daytime respiration based on isotope mixing model calculation had greater variability than that based on temperature response model, with a mean value of 2.31 µmol·m-2·s-1 and 2.28 µmol·m-2·s-1, respectively.


Assuntos
Carbono , Ecossistema , Pequim , Dióxido de Carbono/análise , Isótopos de Carbono/análise , China , Florestas , Respiração , Solo
18.
Sci Total Environ ; 739: 139885, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534311

RESUMO

This paper investigated the feasibility of using agricultural wastes and synthetic macromolecules as solid carbon sources and studied the effects of improvement of denitrification by the selected agricultural wastes. The carbon release capacity and denitrification performance of corncob (CC), peanut shell (PS), obsolescent rice (OR) and polycaprolactone (PCL), poly butylene succinate (PBS), polyvinyl alcohol sodium alginate (PVA-SA) were systematically analyzed. The results showed that for each carbon source, the first-order kinetic equation was basically followed during the carbon release process. PVA-SA, CC and PS had higher carbon release capacity with accumulative dissolved organic carbon (DOC) of 16.22-20.63 mg·g-1 and chemical oxygen demand (COD) of 100.86-134.10 mg·g-1. Correspondingly, they showed excellent denitrification performance with almost no residual NO3--N, and the denitrification process well followed the Monod equation. PCL, PBS and OR had lower carbon release capacity with accumulative DOC of 2.06-3.14 mg·g-1 and COD of 13.29-24.13 mg·g-1, respectively. Nevertheless, these materials can also improve the denitrification performance, with the residual NO3--N in the range of 6.02-6.36 mg·L-1, and the effluent DOC was in the range of 10-15 mg·L-1. Synthetic polymers are more suitable for nitrogen removal in groundwater treatment, while agricultural wastes are ideal carbon sources for secondary effluent treatment.

19.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1807-1816, 2020 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34494731

RESUMO

Water availability is the key factor limiting plant growth in arid regions. Populus simonii is a typical shelterbelt tree species in Zhangbei County, Hebei Province, with an important role in constructing ecological barrier. With stable isotope technique, graphical method, and multiple linear mixing model, we analyzed water sources and water use strategies of P. simonii in different growth periods with four different degrees of degradation (non-degraded, slightly degraded, modera-tely degraded and severely degraded) in Zhangbei County. Results would help improve our understanding on the cause and mechanism of the large-scale degradation of P. simonii in this area. The results showed that water sources of P. simonii in the early growth stage (May-June) from all four degradation degrees were relatively simple. P. simonii mainly used soil water in 0-40 cm, with the utilization rates being 34.2%, 50.1%, 41.6%, and 55.7% for the four degradation degrees, respectively. At the middle growth stage (July-August), non-degraded P. simonii utilized soil water from layers of 200-280 cm and 280-400 cm, with utilization rates of 20.2% and 30.9%, respectively. Soil water at 200-280 cm and 280-400 cm layers was utilized by slightly degraded poplar, with the contribution rates of each layer being 33.2% and 27.9%, respectively. Moderately degraded P. simonii utilized soil water from the depths of 0-40 cm and 40-120 cm, with the rates of 30% and 26.9%, respectively. Water utilization rate of severely degraded P. simonii to 0-40 cm depth was 55.4%. At the late growth stage (September-October), water sources of non-degraded P. simonii transferred to the upper-middle soil layers, with the utilization rate of 0-40 cm, 40-80 cm, and 80-120 cm being 23.3%, 17.2%, and 16.5%, respectively. The utilization rate of the slightly degraded P. simonii was 35.7% at 0-40 cm and 20.6% at 80-200 cm. The moderately and severely degraded P. simonii mainly utilized soil water at 0-40 cm layer, with the contribution rates of soil water being 43.7% and 51.8%, respectively. With the exacerbation of degradation, the main water source of P. simonii gradually transferred from deep to surface soil water.


Assuntos
Populus , Isótopos , Solo , Árvores , Água
20.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1827-1834, 2020 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34494733

RESUMO

Clarifying 18O isotope composition of leaf water (δL,b) would provide theoretical refe-rence for the study of leaf physiology and forest hydrology. We continuously monitored the concentration of atmospheric water vapor (Wa) and 18O isotope composition of atmospheric water vapor (δv) at the canopy of Platycladus lateralis plantation in the mountain area of Beijing. We analyzed the effects of kinetic fractionation coefficients Δk1(32%) and Δk2(28%) on the prediction of δL,b by combining the measured leaf water 18O isotope (δx) and δL,b of P. lateralis. The results showed that the diurnal variation of Wa was irregular. Atmospheric relative humidity (RH) showed a "V" shape of diurnal variation, and stomatal conductance (gs) increased first and then decreased at the diurnal scale. Wa, RH, and gs showed a significant negative correlation with δL,b when isotopes approached a steady-state equilibrium around noon. The kinetic fractionation coefficient Δk1 and Δk2 were applied to the Craig-Gordon model to predict δL,b under the isotopic quasi-steady-state condition. The results showed that the predicted values of Δk2 approached the observed values of δL,b. This result indicated that the application of Δk2 to the model was more consistent with the change of water isotope concentration in the leaves of P. lateralis in the mountain area of Beijing. These results would improve our understanding of water isotope enrichment model and evapotranspiration resolution model in leaves.


Assuntos
Folhas de Planta , Água , Cinética , Isótopos de Oxigênio/análise , Folhas de Planta/química , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA