Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257536

RESUMO

Schistosomiasis is a parasitic helminth disease that can cause organ lesions leading to health damage. During a schistosome infection, schistosome eggs can flow into the liver along the portal vein. Numerous inflammatory cells gather around the eggs, causing granulomas and fibrosis in the liver. In this process, many molecules are involved in the initiation and regulation of the fibrous scar formation. However, the precise molecular mechanisms responsible for the progression of granuloma formation and fibrosis initiation caused by schistosome infection have not been extensively studied. In this study, C57BL/6 wild-type mice and Stat3flox/flox Alb-Cre mice were infected with cercariae of Schistosoma japonicum Liver injury, effector molecule levels, and RNA transcriptome resequencing of liver tissue were detected at 4, 5, and 6 weeks postinfection. We investigated the role of STAT3 (signal transducer and activator of transcription 3) in Schistosoma-induced liver injury in mice. After 6 weeks postinfection, there was obvious liver fibrosis. A sustained pathological process (inflammation, oxidative stress, proliferation, and apoptosis) occurred in S. japonicum-induced liver fibrosis initiation. Meanwhile, we observed activation of the STAT3 pathway in hepatic injury during S. japonicum infection by RNA transcriptome resequencing. Liver deficiency of phospho-STAT3 alleviated infection-induced liver dysfunction, hepatic granuloma formation, and fibrosis initiation. It also promoted STAT3-dependent apoptosis and reduced liver inflammation, oxidative stress, and proliferation. Our results suggest that STAT3 signal pathway and its mediating inflammation, oxidative stress, proliferation, and apoptosis are involved in S. japonicum-induced liver injury and may be a new potential guideline for the treatment of schistosomiasis.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Inflamação/genética , Cirrose Hepática/genética , Estresse Oxidativo/genética , Fator de Transcrição STAT3/genética , Esquistossomose Japônica/genética , Animais , Inflamação/parasitologia , Cirrose Hepática/parasitologia , Schistosoma japonicum/genética , Esquistossomose Japônica/patologia
2.
Ann Hepatol ; 21: 100224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32702499

RESUMO

Janus protein tyrosine kinase (JAK) has the ability to activate signal transducer and activator of transcription (STAT). STAT3 is a valued member of the JAK/STAT signaling pathway. In recent years, several studies have documented that STAT3 is closely related to the occurrence and development of liver fibrosis caused by various factors. Activation of STAT3 can play anti- or pro-inflammatory roles in the pathogenesis of liver fibrosis. This article reviewed the recent studies on STAT3 in the development of various liver fibrosis to find a more effective method to relieve and cure liver diseases, such as hepatitis B virus (HBV), non-alcoholic fatty liver disease (NAFLD), schistosomiasis, and chemical liver injury.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Cirrose Hepática/genética , Fator de Transcrição STAT3/genética , Humanos , Cirrose Hepática/diagnóstico , Cirrose Hepática/metabolismo , Fator de Transcrição STAT3/biossíntese , Transdução de Sinais
3.
Pharmacol Res ; 159: 104926, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502636

RESUMO

Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, dysfunction, and eventually leading to heart failure. Intermedin (IMD), as a paracrine/autocrine peptide, has a protective effect in cardiovascular diseases. In this study, we elucidated the role and the underlying mechanism of IMD in pathological remodeling. Pathological remodeling mouse models were induced by abdominal aorta constriction for 4 weeks or angiotensin II (Ang II) infusion for 2 weeks in wildtype, IMD-overexpression, IMD-knockout and klotho-knockdown mice. Western blot, real-time PCR, histological staining, echocardiography and hemodynamics were used to detect the role of IMD in cardiac remodeling. Cardiac hypertrophy, fibrosis and dysfunction were significantly aggravated in IMD-knockout mice versus wildtype mice, and the expression of klotho was downregulated. Conversely, cardiac remodeling was alleviated in IMD-overexpression mice, and the expression of klotho was upregulated. Hypertension induced by Ang II infusion rather than abdominal aorta constriction was mitigated by IMD. However, the cardioprotective effect of IMD was blocked in klotho-knockdown mice. Similar results were found in cultured neonatal rat cardiomyocytes, which was pretreated with IMD before Ang II stimulation. Mechanistically, IMD inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the activity of calcineurin to protect against cardiac hypertrophy through upregulating klotho in vivo and in vitro. Furthermore, peroxisome proliferator-activated receptor γ (PPARγ) might mediate IMD upregulating klotho. In conclusion, pathological remodeling may be alleviated by endogenous IMD, which inhibits the expression of calcineurin and p-CaMKII by upregulating klotho via the PPARγ pathway. It suggested that IMD might be a therapeutic target for heart disease.


Assuntos
Glucuronidase/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/metabolismo , Neuropeptídeos/metabolismo , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular , Angiotensina II , Animais , Aorta Abdominal/fisiopatologia , Aorta Abdominal/cirurgia , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Constrição , Modelos Animais de Doenças , Fibrose , Glucuronidase/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Proteínas Klotho , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Neuropeptídeos/genética , PPAR gama/metabolismo , Hormônios Peptídicos/farmacologia , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
4.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570558

RESUMO

Schistosomiasis is a parasitic helminth disease that can cause severe inflammatory pathology, leading to organ damage, in humans. During a schistosomal infection, the eggs are trapped in the host liver, and products derived from eggs induce a polarized Th2 cell response, resulting in granuloma formation and eventually fibrosis. Previous studies indicated that the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in schistosomiasis-associated liver fibrosis and that taurine could ameliorate hepatic granulomas and fibrosis caused by Schistosoma japonicum infection. Nevertheless, the precise role and molecular mechanism of the NLRP3 inflammasome and the protective effects of taurine in S. japonicum infection have not been extensively studied. In this study, we investigated the role of the NLRP3 inflammasome and the hepatoprotective mechanism of taurine in schistosoma-induced liver injury in mice. NLRP3 deficiency ameliorated S. japonicum-infection-induced hepatosplenomegaly, liver dysfunction, and hepatic granulomas and fibrosis; it also reduced NLRP3-dependent liver pyroptosis. Furthermore, taurine suppressed hepatic thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation in mice with S. japonicum infections, thereby inhibiting the activation of downstream inflammatory mediators such as interleukin-1ß and subsequent pyroptosis. Our results suggest that the TXNIP/NLRP3 inflammasome pathway and mediating pyroptosis are involved in S. japonicum-induced liver injury and may be a potential therapeutic target for schistosomiasis treatment. In addition, taurine may be useful to alleviate or to prevent the occurrence of schistosomiasis-associated liver fibrosis.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Taurina/farmacologia , Tiorredoxinas/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Fígado/lesões , Fígado/parasitologia , Cirrose Hepática/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/imunologia , Esquistossomose Japônica/parasitologia , Transdução de Sinais/imunologia
5.
Arterioscler Thromb Vasc Biol ; 36(11): 2176-2190, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634835

RESUMO

OBJECTIVE: Oxidative stress plays a critical role in the development of abdominal aortic aneurysm (AAA). Intermedin (IMD) is a regulator of oxidative stress. Here, we investigated whether IMD reduces AAA by inhibiting oxidative stress. APPROACH AND RESULTS: In angiotensin II-induced ApoE-/- mouse and CaCl2-induced C57BL/6J mouse model of AAA, IMD1-53 significantly reduced the incidence of AAA and maximal aortic diameter. Ultrasonography, hematoxylin, and eosin staining and Verhoeff-van Gieson staining showed that IMD1-53 significantly decreased the enlarged aortas and elastic lamina degradation induced by angiotensin II or CaCl2. Mechanistically, IMD1-53 attenuated oxidative stress, inflammation, vascular smooth muscle cell apoptosis, and matrix metalloproteinase activation. IMD1-53 inhibited the activation of redox-sensitive signaling pathways, decreased the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase subunits, and reduced the activity of nicotinamide adenine dinucleotide phosphate oxidase in AAA mice. Expression of Nox4 was upregulated in human AAA segments and in angiotensin II-treated mouse aortas and was markedly decreased by IMD1-53. In vitro, vascular smooth muscle cells with small-interfering RNA knockdown of IMD showed significantly increased angiotensin II-induced reactive oxygen species, and small-interfering RNA knockdown of Nox4 markedly inhibited the reactive oxygen species. IMD knockdown further increased the apoptosis of vascular smooth muscle cells and inflammation, which was reversed by Nox4 knockdown. Preincubation with IMD17-47 and protein kinase A inhibitor H89 inhibited the effect of IMD1-53, reducing Nox4 protein levels. CONCLUSIONS: IMD1-53 could have a protective effect on AAA by inhibiting oxidative stress.


Assuntos
Antioxidantes/farmacologia , Aorta Abdominal/efeitos dos fármacos , Aneurisma da Aorta Abdominal/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Adrenomedulina/metabolismo , Angiotensina II , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose/efeitos dos fármacos , Cloreto de Cálcio , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dilatação Patológica , Modelos Animais de Doenças , Genótipo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , NADPH Oxidases/metabolismo , Neuropeptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
6.
Kidney Int ; 89(3): 586-600, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880455

RESUMO

Deficiency in α-Klotho is involved in the pathogenesis of vascular calcification. Since intermedin (IMD)1-53 (a calcitonin/calcitonin gene-related peptide) protects against vascular calcification, we studied whether IMD1-53 inhibits vascular calcification by upregulating α-Klotho. A rat model of chronic kidney disease (CKD) with vascular calcification induced by the 5/6 nephrectomy plus vitamin D3 was used for study. The aortas of rats with CKD showed reduced IMD content but an increase of its receptor, calcitonin receptor-like receptor, and its receptor modifier, receptor activity-modifying protein 3. IMD1-53 treatment reduced vascular calcification. The expression of α-Klotho was greatly decreased in the aortas of rats with CKD but increased in the aortas of IMD1-53-treated rats with CKD. In vitro, IMD1-53 increased α-Klotho protein level in calcified vascular smooth muscle cells. α-Klotho knockdown blocked the inhibitory effect of IMD1-53 on vascular smooth muscle cell calcification and their transformation into osteoblast-like cells. The effect of IMD1-53 to upregulate α-Klotho and inhibit vascular smooth muscle cell calcification was abolished by knockdown of its receptor or its modifier protein, or treatment with the protein kinase A inhibitor H89. Thus, IMD1-53 may attenuate vascular calcification by upregulating α-Klotho via the calcitonin receptor/modifying protein complex and protein kinase A signaling.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Glucuronidase/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Calcificação Vascular/prevenção & controle , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Células Cultivadas , Colecalciferol , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Glucuronidase/genética , Humanos , Proteínas Klotho , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Nefrectomia , Osteoblastos/metabolismo , Osteoblastos/patologia , Fenótipo , Interferência de RNA , Ratos Sprague-Dawley , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais/efeitos dos fármacos , Transfecção , Regulação para Cima , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
7.
J Cardiovasc Pharmacol ; 67(6): 519-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26859198

RESUMO

Adhesion of monocytes to the vascular endothelium is crucial in atherosclerosis development. Connexins (Cxs) which form hemichannels or gap junctions, modulate monocyte-endothelium interaction. We previously found that rutaecarpine, an active ingredient of the Chinese herbal medicine Evodia, reversed the altered Cx expression induced by oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells, and consequently decreases the adhesive properties of endothelial cells to monocytes. This study further investigated the effect of rutaecarpine on Cx expression in monocytes exposed to ox-LDL. In cultured human monocytic cell line THP-1, ox-LDL rapidly reduced the level of atheroprotective Cx37 but enhanced that of atherogenic Cx43, thereby inhibiting adenosine triphosphate release through hemichannels. Pretreatment with rutaecarpine recovered the expression of Cx37 but inhibited the upregulation of Cx43 induced by ox-LDL, thereby improving adenosine triphosphate-dependent hemichannel activity and preventing monocyte adhesion. These effects of rutaecarpine were attenuated by capsazepine, an antagonist of transient receptor potential vanilloid subtype 1. The antiadhesive effects of rutaecarpine were also attenuated by hemichannel blocker 18α-GA. This study provides additional evidence that rutaecarpine can modulate Cx expression through transient receptor potential vanilloid subtype 1 activation in monocytes, which contributes to the antiadhesive properties of rutaecarpine.


Assuntos
Conexinas/efeitos dos fármacos , Endotélio Vascular/metabolismo , Alcaloides Indólicos/farmacologia , Lipoproteínas LDL/metabolismo , Monócitos/metabolismo , Quinazolinas/farmacologia , Trifosfato de Adenosina/metabolismo , Aterosclerose/fisiopatologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Fatores de Tempo
8.
Calcif Tissue Int ; 96(1): 80-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25416842

RESUMO

Thyroid hormones (THs) including thyroxine (T4) and triiodothyronine (T3) play critical roles in bone remodeling. However, the role and mechanism of THs in vascular calcification (VC) have been unclear. To explore the pathophysiological roles of T3 on VC, we investigated the changes in plasma and aortas of THs concentrations and the effect of T3 on rat VC induced by vitamin D3 plus nicotine (VDN). VDN-treated rat showed decreased plasma T3 content, increased vascular calcium deposition, and alkaline phosphatase (ALP) activity. Administration of T3 (0.2 mg/kg body weight IP) for 10 days greatly reduced vascular calcium deposition and ALP activity in calcified rat aortas when compared with controls. Concurrently, the loss of smooth muscle lineage markers α-actin and SM22a was restored, and the increased bone-associated molecules, such as runt-related transcription factor2 (Runx2), Osterix, and osteopontin (OPN) levels in calcified aorta, were reduced by administration of T3. The suppression of klotho in calcified rat aorta was restored by T3. Methimazole (400 mg/L) blocked the beneficial effect of T3 on VC. These results suggested that T3 can inhibit VC development.


Assuntos
Remodelação Óssea/efeitos dos fármacos , Colecalciferol/farmacologia , Nicotina/farmacologia , Hormônios Tireóideos/farmacologia , Calcificação Vascular/tratamento farmacológico , Animais , Osso e Ossos/irrigação sanguínea , Modelos Animais de Doenças , Masculino , Osteopontina/metabolismo , Ratos Sprague-Dawley , Hormônios Tireóideos/metabolismo , Calcificação Vascular/induzido quimicamente
9.
Exp Parasitol ; 145: 1-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24996067

RESUMO

Gastrointestinal helminth infection, including Trichinella spiralis, initiates a series of intestinal structural, cellular and physiological changes. Intestinal invasion is an important stage of trichinellosis because it determines the development and subsequent course of the disease and its consequences. Apoptosis mediated by endoplasmic reticulum stress (ERS) plays a key role in infectious diseases, but the effect of T. spiralis infection on inducing apoptosis in the small intestine has been neglected. We investigated apoptosis and changes in ERS-associated apoptosis molecules in the intestine of mice with T. spiralis infection. TUNEL staining and detection of the apoptotic marker cleaved caspase 3 revealed that apoptosis occurred in the mouse intestine at days 3 and 7 post-infection. The ER chaperone 78-kDa glucose-regulated protein (GRP78) was upregulated at days 3 and 7 post-infection. The ERS-associated apoptosis molecules C/EBP homologous protein, cleaved caspase 12 and c-Jun NH2-terminal kinase were upregulated at days 3 and 7, days 3, 7 and 10 and days 7 and 10 post-infection, respectively. Thus, apoptosis occurred in the intestine of mice with T. spiralis infection, and the ERS-mediated apoptosis pathway was activated by infection with this small intestine dwelling nematode.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático/fisiologia , Jejuno/patologia , Trichinella spiralis/fisiologia , Triquinelose/patologia , Animais , Caspase 12/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Proteínas de Choque Térmico/metabolismo , Jejuno/parasitologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos ICR , Coelhos , Fator de Transcrição CHOP/metabolismo , Regulação para Cima
10.
Pharmaceuticals (Basel) ; 17(9)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39338366

RESUMO

Diabetic cardiomyopathy (DCM), one of the most serious long-term consequences of diabetes, is closely associated with myocardial fatty acid metabolism. Carnitine palmitoyltransferase-1ß (CPT-1ß) is the rate-limiting enzyme responsible for ß-oxidation of long-chain fatty acids. Intermedin (IMD) is a pivotal bioactive small molecule peptide, participating in the protection of various cardiovascular diseases. However, the role and underlying mechanisms of IMD in DCM are still unclear. In this study, we investigated whether IMD alleviates DCM via regulating CPT-1ß. A rat DCM model was established by having rats to drink fructose water for 12 weeks. A mouse DCM model was induced by feeding mice a high-fat diet for 16 weeks. We showed that IMD and its receptor complexes levels were significantly down-regulated in the cardiac tissues of DCM rats and mice. Reduced expression of IMD was also observed in neonatal rat cardiomyocytes treated with palmitic acid (PA, 300 µM) in vitro. Exogenous and endogenous IMD mitigated cardiac hypertrophy, fibrosis, dysfunction, and lipid accumulation in DCM rats and IMD-transgenic DCM mice, whereas knockout of IMD worsened these pathological processes in IMD-knockout DCM mice. In vitro, IMD alleviated PA-induced cardiomyocyte hypertrophy and cardiac fibroblast activation. We found that CPT-1ß enzyme activity, mRNA and protein levels, and acetyl-CoA content were increased in T2DM patients, rats and mice. IMD up-regulated the CPT-1ß levels and acetyl-CoA content in T2DM rats and mice. Knockdown of CPT-1ß blocked the effects of IMD on increasing acetyl-CoA content and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. IMD receptor antagonist IMD17-47 and the phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt) inhibitor LY294002 reversed the effects of IMD on up-regulating CPT-1ß and acetyl-CoA expression and on inhibiting cardiomyocyte hypertrophy and cardiac fibroblast activation. We revealed that IMD alleviates DCM by up-regulating CPT-1ß via calcitonin receptor-like receptor/receptor activity-modifying protein (CRLR/RAMP) receptor complexes and PI3K/Akt signaling. IMD may serve as a potent therapeutic target for the treatment of DCM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA