RESUMO
The ß-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimer's disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aß levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.
Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Xantenos/química , Xantenos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Animais , Linhagem Celular , Células HEK293 , Humanos , Inibidores de Proteases/síntese química , Ratos , Xantenos/síntese químicaRESUMO
γ-Secretase modulators (GSMs) are potentially disease-modifying treatments for Alzheimer's disease. They selectively lower pathogenic Aß42 levels by shifting the enzyme cleavage sites without inhibiting γ-secretase activity, possibly avoiding known adverse effects observed with complete inhibition of the enzyme complex. A cell-based HTS effort identified the sulfonamide 1 as a GSM lead. Lead optimization studies identified compound 25 with improved cell potency, PKDM properties, and it lowered Aß42 levels in the cerebrospinal fluid (CSF) of Sprague-Dawley rats following oral administration. Further optimization of 25 to improve cellular potency is described.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Amidas/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Picolinas/farmacologia , Doença de Alzheimer/enzimologia , Amidas/química , Animais , Células HEK293 , Humanos , Picolinas/química , Ratos , Ratos Sprague-DawleyRESUMO
A 2-aminothiazole derivative 1 was developed as a potential inhibitor of the oncology target AKT, a serine/threonine kinase. When incubated in rat and human liver microsomes in the presence of NADPH, 1 underwent significant metabolic activation on its 2-aminothiazole ring, leading to substantial covalent protein binding. Upon addition of glutathione, covalent binding was reduced significantly, and multiple glutathione adducts were detected. Novel metabolites from the in vitro incubates were characterized by LC-MS and NMR to discern the mechanism of bioactivation. An in silico model was developed based on the proposed mechanism and was employed to predict bioactivation in 23 structural analogues. The predictions were confirmed empirically for the bioactivation liability, in vitro, by LC-MS methods screening for glutathione incorporation. New compounds were identified with a low propensity for bioactivation.
Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Tiazóis/efeitos adversos , Tiazóis/química , Animais , Compostos de Epóxi/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Estrutura Molecular , Ratos , Tiazóis/metabolismoRESUMO
The bradykinin B1 receptor has been shown to mediate pain response and is rapidly induced upon injury. Blocking this receptor may provide a promising treatment for inflammation and pain. We previously reported tetralin benzyl amines as potent B1 antagonists. Here we describe the synthesis and SAR of B1 receptor antagonists with homobenzylic amines. The SAR of different linkers led to the discovery of tetralin allylic amines as potent and selective B1 receptor antagonists (hB1 IC(50)=1.3 nM for compound 16). Some of these compounds showed modest oral bioavailability in rats.
Assuntos
Benzilaminas/química , Antagonistas de Receptor B1 da Bradicinina , Sulfonamidas/química , Tetra-Hidronaftalenos/química , Administração Oral , Animais , Dor/tratamento farmacológico , Ratos , Receptor B1 da Bradicinina/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêuticoRESUMO
Through a combination of screening and structure-based rational design, we have discovered a series of N(1)-(5-(heterocyclyl)-thiazol-2-yl)-3-(4-trifluoromethylphenyl)-1,2-propanediamines that were developed into potent ATP competitive inhibitors of AKT. Studies of linker strand-binding adenine isosteres identified SAR trends in potency and selectivity that were consistent with binding interactions observed in structures of the inhibitors bound to AKT1 and to the counter-screening target PKA. One compound was shown to have acceptable pharmacokinetic properties and to be a potent inhibitor of AKT signaling and of in vivo xenograft tumor growth in a preclinical model of glioblastoma.
Assuntos
Antineoplásicos/química , Azóis/química , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Azóis/farmacocinética , Azóis/uso terapêutico , Sítios de Ligação , Cristalografia por Raios X , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Malonyl-CoA decarboxylase (MCD) catalyzes the conversion of malonyl-CoA to acetyl-CoA and thereby regulates malonyl-CoA levels in cells. Malonyl-CoA is a potent inhibitor of mitochondrial carnitine palmitoyltransferase-1, a key enzyme involved in the mitochondrial uptake of fatty acids for oxidation. Abnormally high rates of fatty acid oxidation contribute to ischemic damage. Inhibition of MCD leads to increased malonyl-CoA and therefore decreases fatty acid oxidation, representing a novel approach for the treatment of ischemic heart injury. The commonly used MCD assay monitors the production of NADH fluorometrically, which is not ideal for library screening due to potential fluorescent interference by certain compounds. Here we report a luminescence assay for MCD activity. This assay is less susceptible to fluorescent interference by compounds. Furthermore, it is 150-fold more sensitive, with a detection limit of 20 nM acetyl-CoA, compared to 3 muM in the fluorescence assay. This assay is also amenable to automation for high-throughput screening and yields excellent assay statistics (Z' > 0.8). In addition, it can be applied to the screening for inhibitors of any other enzymes that generate acetyl-CoA.
Assuntos
Carboxiliases/análise , Luminescência , Medições Luminescentes/métodos , Carboxiliases/genética , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Fluorescência , Humanos , Cinética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos TestesRESUMO
Transient-receptor-potential melastatin 8 (TRPM8), the predominant mammalian cold-temperature thermosensor, is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system, including nerve circuitry implicated in migraine pathogenesis: the trigeminal and pterygopalatine ganglia. Genomewide association studies have identified an association between TRPM8 and reduced risk of migraine. This disclosure focuses on medicinal-chemistry efforts to improve the druglike properties of initial leads, particularly removal of CYP3A4-induction liability and improvement of pharmacokinetic properties. A novel series of biarylmethanamide TRPM8 antagonists was developed, and a subset of leads were evaluated in preclinical toxicology studies to identify a clinical candidate with an acceptable preclinical safety profile leading to clinical candidate AMG 333, a potent and highly selective antagonist of TRPM8 that was evaluated in human clinical trials.
Assuntos
Anticonvulsivantes/farmacologia , Descoberta de Drogas , Transtornos de Enxaqueca/prevenção & controle , Niacina/química , Convulsões/tratamento farmacológico , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Anticonvulsivantes/química , Agonistas dos Canais de Cálcio/toxicidade , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Pirimidinonas/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamenteRESUMO
11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) is the enzyme that converts cortisone to cortisol. A growing body of evidence suggests that selective inhibition of 11beta-HSD1 could potentially treat metabolic syndrome as well as type 2 diabetes. Through modification of our initial lead 1, we have discovered trifluoromethyl thiazolone 17. This compound had a Ki of 22 nM, possessed low in vivo clearance, and showed a 91% inhibition of adipose 11beta-HSD1 enzymatic activity in a mouse ex vivo pharmacodynamic model.
Assuntos
Tiazóis/síntese química , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Tecido Adiposo/enzimologia , Administração Oral , Animais , Disponibilidade Biológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Tiazóis/farmacocinética , Tiazóis/farmacologiaRESUMO
The bradykinin B1 receptor is induced following tissue injury and/or inflammation. Antagonists of this receptor have been studied as promising candidates for treatment of chronic pain. We have identified aryl sulfonamides containing a chiral chroman diamine moiety that are potent antagonists of the human B1 receptor. Our previously communicated lead, compound 2, served as a proof-of-concept molecule, but suffered from poor pharmacokinetic properties. With guidance from metabolic profiling, we performed structure-activity relationship studies and have identified potent analogs of 2. Variation of the sulfonamide moiety revealed a preference for 3- and 3,4-disubstituted aryl sulfonamides, while bulky secondary and tertiary amines were preferred at the benzylic amine position for potency at the B1 receptor. Modifying the beta-amino acid core of the molecule lead to the discovery of highly potent compounds with improved in vitro pharmacokinetic properties. The most potent analog at the human receptor, compound 38, was also active in a rabbit B1 receptor cellular assay. Furthermore, compound 38 displayed in vivo activity in two rabbit models, a pharmacodynamic model with a blood pressure readout and an efficacy model of inflammatory pain.
Assuntos
Amidas/síntese química , Analgésicos/síntese química , Benzopiranos/síntese química , Antagonistas de Receptor B1 da Bradicinina , Cromanos/síntese química , Sulfonamidas/síntese química , Amidas/farmacocinética , Amidas/farmacologia , Analgésicos/farmacocinética , Analgésicos/farmacologia , Animais , Benzopiranos/farmacocinética , Benzopiranos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células CHO , Cálcio/metabolismo , Cromanos/farmacocinética , Cromanos/farmacologia , Cricetinae , Cricetulus , Humanos , Técnicas In Vitro , Inflamação/tratamento farmacológico , Masculino , Microssomos/metabolismo , Dor/tratamento farmacológico , Coelhos , Ratos , Ratos Sprague-Dawley , Receptor B1 da Bradicinina/agonistas , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologiaRESUMO
Orally bioavailable SERDs may offer greater systemic drug exposure, improved clinical efficacy, and more durable treatment outcome for patients with ER-positive endocrine-resistant breast cancer. We report the design and synthesis of a boronic acid modified fulvestrant (5, ZB716), which binds to ERα competitively (IC50 = 4.1 nM) and effectively downregulates ERα in both tamoxifen-sensitive and tamoxifen-resistant breast cancer cells. Furthermore, It has superior oral bioavailability (AUC = 2547.1 ng·h/mL) in mice, indicating its promising clinical utility as an oral SERD.
Assuntos
Ácidos Borônicos/química , Moduladores Seletivos de Receptor Estrogênico/química , Esteróis/química , Administração Oral , Animais , Disponibilidade Biológica , Ácidos Borônicos/síntese química , Ácidos Borônicos/farmacologia , Neoplasias da Mama , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Receptor alfa de Estrogênio/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Moduladores Seletivos de Receptor Estrogênico/síntese química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Transdução de Sinais , Estereoisomerismo , Esteróis/síntese química , Esteróis/farmacologia , Tamoxifeno/farmacologiaRESUMO
All eight of the major active metabolites of (S)-2-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221, compound 1), an inhibitor of 11ß-hydroxysteroid dehydrogenase type 1 that has entered the clinic for the treatment of type 2 diabetes, were synthetically prepared and confirmed by comparison with samples generated in liver microsomes. After further profiling, we determined that metabolite 2 was equipotent to 1 on human 11ß-HSD1 and had lower in vivo clearance and higher bioavailability in rat and mouse. Compound 2 was advanced into a pharmacodynamic model in mouse where it inhibited adipose 11ß-HSD1 activity.
RESUMO
A series of compounds containing the 2-amino-1,3-thiazol-4(5H)-one core were found to be potent inhibitors of the enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). One of our lead compounds from this series activated the human nuclear xenobiotic receptor, pregnane X receptor (PXR). To try and mitigate the PXR activity, we prepared analogues of our lead series that contained polar groups on the right-hand side of the thiazolone. Several analogues containing amides or alcohols appended to the C-5 position of the thiazolone showed a significant reduction in PXR activity. Through these structure-activity efforts, a compound containing a tert-alcohol group off the C-5 position, analogue (S)-33a, was found to have an 11beta-HSD1 Ki = 35 nM and negligible PXR activity. Compound (S)-33a was advanced into a pharmacodynamic model in cynomolgus monkeys, where it inhibited adipose 11beta-HSD1 activity after being orally administered.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Receptores de Esteroides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Animais , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Citocromo P-450 CYP3A/química , Desenho de Fármacos , Humanos , Cinética , Macaca fascicularis , Masculino , Modelos Moleculares , Conformação Molecular , Receptor de Pregnano X , Distribuição TecidualRESUMO
Inhibition of tumor-induced angiogenesis is a promising strategy in anticancer research. Neovascularization is a process required for both tumor growth and metastasis. Enhanced understanding of the underlying molecular mechanisms has led to the discovery of a variety of pharmaceutically attractive targets. Decades of investigation suggest that vascular endothelial growth factor (VEGF) and its receptors, in particular VEGFR2 or kinase insert-domain-containing receptor (Kdr), play a critical role in the growth and survival of endothelial cells in newly forming vasculature. The clinical utility of inhibitors of this receptor tyrosine kinase is currently under intense investigation. Herein we report our efforts in this arena.
Assuntos
Niacinamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Linhagem Celular Tumoral , HumanosRESUMO
A series of 2-anilinothiazolones were prepared as inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The most potent compounds contained a 2-chloro or 2-fluoro group on the aniline ring with an isopropyl substituent on the 5-position of the thiazolone ring (compounds 2 and 3, respectively). The binding mode was determined through the X-ray co-crystal structure of the enzyme with compound 3. This compound was also approximately 70-fold selective over 11beta-HSD2 and was orally bioavailable in rat pharmacokinetic studies. However, compound 3 was >580-fold less active in the 11beta-HSD1 cell assay when tested in the presence of 3% human serum albumin.