Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Evol Biol ; 13: 165, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23914989

RESUMO

BACKGROUND: In recent years, as the development of next-generation sequencing technology, a growing number of genes have been reported as being horizontally transferred from prokaryotes to eukaryotes, most of them involving arthropods. As a member of the phylum Arthropoda, the Pacific white shrimp Litopenaeus vannamei has to adapt to the complex water environments with various symbiotic or parasitic microorganisms, which provide a platform for horizontal gene transfer (HGT). RESULTS: In this study, we analyzed the genome-wide HGT events in L. vannamei. Through homology search and phylogenetic analysis, followed by experimental PCR confirmation, 14 genes with HGT event were identified: 12 of them were transferred from bacteria and two from fungi. Structure analysis of these genes showed that the introns of the two fungi-originated genes were substituted by shrimp DNA fragment, two genes transferred from bacteria had shrimp specific introns inserted in them. Furthermore, around other three bacteria-originated genes, there were three large DNA segments inserted into the shrimp genome. One segment was a transposon that fully transferred, and the other two segments contained only coding regions of bacteria. Functional prediction of these 14 genes showed that 6 of them might be related to energy metabolism, and 4 others related to defense of the organism. CONCLUSIONS: HGT events from bacteria or fungi were happened in the genome of L. vannamei, and these horizontally transferred genes can be transcribed in shrimp. This is the first time to report the existence of horizontally transferred genes in shrimp. Importantly, most of these genes are exposed to a negative selection pressure and appeared to be functional.


Assuntos
Bactérias/genética , Fungos/genética , Transferência Genética Horizontal , Genoma , Penaeidae/genética , Penaeidae/microbiologia , Animais , Íntrons , Penaeidae/classificação , Filogenia
2.
DNA Res ; 16(2): 91-104, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19221094

RESUMO

In this study, the factors driving genome-wide patterns of codon usages in Lawsonia intracellularis genome are determined. For genes on the chromosome of the bacterium, it is found that the most important source of variation results from strand-specific mutational biases. A lesser trend of variation is attributable to genes that are presumed as horizontally transferred. These putative alien genes are unusually GC richer than the other genes, whereas horizontally transferred genes have been observed to be AT rich in bacteria with medium and relatively low G + C contents. Hydropathy of encoded protein and expression level are also found to influence codon usage. Therefore, codon usage in L. intracellularis chromosome is the result of a complex balance among the different mutational and selectional factors. When analyzing genes in the largest plasmid, for the first time it is found that the strand-specific mutational biases are responsible for the primary variation of codon usages in plasmid. Genes, particularly highly expressed genes of this plasmid, are mainly located on the leading strands and this supposed to be the effects exerted by replicational-transcriptional selection. These facts suggest that this plasmid adopts the similar mechanism of replication as the chromosome in L. intracellularis. Common characters among the 10 bacteria in whose genomes the strand-specific mutational biases are the primary source of variation of codon usage are also investigated. For example, it is found that genes dnaT and fis that are involved in DNA replication initiation and re-initiation pathways are absent in all of the 10 bacteria.


Assuntos
Cromossomos Bacterianos/genética , Códon/genética , Genes Bacterianos/genética , Lawsonia (Bactéria)/genética , Plasmídeos/genética , Composição de Bases , Sequência de Bases , Replicação do DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Transferência Genética Horizontal , Genoma Bacteriano , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA