Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Pharm ; 19(10): 3542-3550, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35285645

RESUMO

Cytokeratin-14 (CK14), also known as keratin 14, is mainly expressed in the basal layer of stratified squamous epithelium. It has a critical role in maintaining cell morphology and resisting external mechanical stress. High levels of CK14 have been found in multiple types of tumors, especially basal-like breast cancer (BLBC). In this study, an anti-CK14 monoclonal antibody was successfully produced, purified, and labeled with 99mTc to evaluate the feasibility of visualizing the CK14 level in BLBC. Higher CK14 levels were found in MDA-MB-468 cells and tumors compared with the levels in MDA-MB-231 cells and tumors as revealed by Western blotting and immunohistochemistry experiments. The high binding specificity of 99mTc-HYNIC-Anti-CK14 mAb to CK14+ BLBC cells was verified by cell uptake and blocking studies. Single-photon emission computed tomography (SPECT) images exhibited higher radioactivity accumulation in MDA-MB-468 tumors compared with MDA-MB-231 tumors. The signal in MDA-MB-468 tumors decreased significantly when 100-fold excess amounts of anti-CK14 mAb were injected 1 h prior to SPECT, further validating the high specificity of the tracer. Biodistribution study results were consistent with SPECT imaging. In conclusion, we successfully constructed a CK14 targeting tracer, 99mTc-HYNIC-Anti-CK14 mAb, which has a high binding ability to CK14+ tumors, signifying its potential value in the immunoSPECT imaging of BLBC.


Assuntos
Neoplasias da Mama , Anticorpos Monoclonais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Queratina-14 , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos
2.
J Biol Inorg Chem ; 25(1): 99-108, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31745667

RESUMO

Malignant melanoma is an aggressive cancer with poor prognosis. Very late antigen-4 (VLA-4) is overexpressed in melanoma and many other tumors, making it an attractive target for developing molecular diagnostic and therapeutic agents. We compared Al18F- and 68Ga-labeled LLP2A peptides for PET imaging of VLA-4 expression in melanoma. The peptidomimetic ligand LLP2A was modified with chelator 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA), and the resulting NOTA-PEG4-LLP2A peptide was then radiolabeled with Al18F or 68Ga. The two labeled peptides were assayed for in vitro and in vivo VLA-4 targeting efficiency. Good Al18F and 68Ga radiolabeling yields were achieved, and the resulting PET tracers showed good serum stability. In the in vivo evaluation of the B16F10 xenograft mouse model, both tracers exhibited high accumulation with good contrast in static PET images. Compared with 68Ga-NOTA-PEG4-LLP2A, Al18F-NOTA-PEG4-LLP2A resulted in relatively higher background, including higher liver uptake (1 h: 20.1 ± 2.6 vs. 15.3 ± 1.7%ID/g, P < 0.05; 2 h: 11.0 ± 1.2 vs. 8.0 ± 0.8%ID/g, P < 0.05) and lower tumor-to-blood ratios (2.5 ± 0.4 vs. 3.3 ± 0.5 at 1 h, P < 0.05; 5.1 ± 0.9 vs. 7.3 ± 0.6 at 2 h, P < 0.01) at some time points. The results obtained from the mice blocked with unlabeled peptides and VLA-4-negative A375 xenografts groups confirmed the high specificity of the developed tracers. Despite the relatively high liver uptake, both Al18F-NOTA-PEG4-LLP2A and 68Ga-NOTA-PEG4-LLP2A exhibited high VLA-4 targeting efficacy with comparable in vivo performance, rendering them promising candidates for imaging tumors that overexpress VLA-4.


Assuntos
Dipeptídeos/administração & dosagem , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Gálio/administração & dosagem , Compostos Heterocíclicos com 1 Anel/administração & dosagem , Integrina alfa4beta1/metabolismo , Melanoma/diagnóstico por imagem , Compostos de Fenilureia/administração & dosagem , Polietilenoglicóis/administração & dosagem , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Animais , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Pharm ; 17(8): 3000-3008, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32544337

RESUMO

Pancreatic cancer is highly malignant and has a five-year survival rate of 5% due to an early lymph node, nerve, and vascular metastasis. Integrin α3ß1 (also called very late antigen-3, VLA-3) is overexpressed in many tumors and plays a vital role in tumor formation, recurrence, and metastasis. In this study, we developed a 68Ga-radiolabeled peptide tracer targeting the α3 unit of VLA-3 and evaluated its potential application in positron emission computed tomography (PET) imaging of pancreatic cancer. NOTA-CK11 was prepared by solid-phase synthesis and successfully radiolabeled with 68Ga with greater than 99% radiochemical purity and a specific activity of 37 ± 5 MBq/nmol (n = 5). The expression level of integrin α3 in three human pancreatic cancer cells was evaluated with the order of SW1990, BXPC-3, and PANC-1 from high to low, while the expression level of integrin ß1 was relatively close. When SW1990 cells with the highest expression level of VLA-3 were stained with FITC-CK11, strong fluorescence was observed by flow cytometry and under a laser confocal microscope. However, no significant fluorescence was observed in the blocking group when treated with excessive CK11. 68Ga-NOTA-CK11 showed significant radioactivity accumulation in SW1990 cells and was blocked by CK11 successfully. Subsequent small-animal PET imaging and biodistribution studies in mice bearing SW1990 xenografts confirmed its high tumor uptake with a good tumor-to-blood ratio and tumor-to-muscle ratio (2.45 ± 0.31 and 3.65 ± 0.33, respectively) at 1 h post injection of the probe. In summary, we successfully developed a peptide-based imaging agent, 68Ga-NOTA-CK11, that showed a strong binding affinity with VLA-3 and good target specificity for SW1990 cells and xenografted pancreatic tumor, rending it a promising radiotracer for PET imaging of VLA-3 expression in pancreatic cancer.


Assuntos
Radioisótopos de Gálio/química , Radioisótopos de Gálio/farmacologia , Integrina alfa3beta1/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia , Neoplasias Pancreáticas
4.
Mol Pharm ; 14(11): 3896-3905, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29037039

RESUMO

Although 18F-5-fluoro-N-(2-[diethylamino]ethyl)picolinamide (18F-5-FPN) is considered a promising radiopharmaceutical for PET imaging of melanoma, it accumulates at high concentrations in the liver. The aim in this research was to optimize the structure of 18F-5-FPN with triethylene glycol to reduce liver uptake as well as improve pharmacokinetics, and to evaluate its performance in detection of melanoma liver and lung metastases. 18F-PEG3-FPN was successfully prepared with a high radiolabeling yield (44.68% ± 5.99%) and radiochemical purity (>99%). The uptake of 18F-PEG3-FPN by pigmented B16F10 melanoma cells was significantly higher than that by amelanotic melanoma A375 cells. The binding to B16F10 cells could be blocked by excess 19F-PEG3-FPN. On small animal PET images, B16F10 tumors, but not A375 tumors, were clearly delineated after 18F-PEG3-FPN injection. More importantly, 18F-PEG3-FPN uptake by liver (2.27 ± 0.45 and 1.74 ± 0.35% ID/g, at 1 and 2 h) was significantly lower than that of 18F-5-FPN, and the lesions in lung and liver could be clearly detected by 18F-PEG3-FPN PET imaging in mouse models of pulmonary or hepatic metastases. Overall, we successfully synthesized 18F-PEG3-FPN, which has higher labeling efficacy and better in vivo pharmacokinetics along with lower liver uptake compared to 18F-5-FPN. This suggests 18F-PEG3-FPN as a candidate for pigmented melanoma liver and lung metastasis detection.


Assuntos
Benzamidas/química , Fluordesoxiglucose F18/química , Melanoma/diagnóstico por imagem , Melanoma/patologia , Ácidos Picolínicos/química , Tomografia por Emissão de Pósitrons/métodos , Amidas/química , Animais , Linhagem Celular Tumoral , Masculino , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
5.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37242028

RESUMO

Experimental and numerical experiments were carried out to study the coffee rings or coffee splats formed by droplet evaporation with micro or nano polystyrene sphere particles (Dp = 10 µm or 100 nm). Particle image velocimetry (PIV) and a high-resolution camera were used in this experiment, along with a temperature-controlled heater and a data-acquisition computer. The results showed that a nano particle could form a homogeneous coffee splat, instead of the common coffee ring formed when using micro particles. In order to account for this phenomenon, this paper developed a complex multiphase model, one which included the smooth particle hydrodynamics (SPH) fluid model coupled with the van der Waals equation of state for droplet evaporation, the rigid particle model of finite-size micro particles, and the point-particle model of the nanometer particles. The numerical simulation was operated on a GPU-based algorithm and tested by four validation cases. A GPU could calculate 533 times the speed of a single-core CPU for about 300,000 particles. The results showed that, for rigid solid particles, the forms emerged spontaneously on the wall, and their structure was mainly affected by the boundary wettability, and less affected by the fluid flow and thermal condition. When the wall temperature was low, it was easier for the particles to be deposited on the contact line. At high wall temperature, the coffee ring effect would be weakened, and the particles were more likely to be deposited in the droplet center. The hydrophilic surface produced a larger coffee ring compared to the hydrophobic surface. The experimental and numerical results proved that particle size could play a significant role during the particle deposition, which may be a possible route for producing uniform-distributed and nano-structure coatings.

6.
Cancers (Basel) ; 13(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771622

RESUMO

Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.

7.
Biomater Sci ; 8(7): 1802-1814, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32163070

RESUMO

Upconversion nanoparticles (UCNPs) have been widely employed for tumor imaging using magnetic resonance imaging (MRI) and upconversion luminescence (UCL) imaging. The short blood clearance time and immunogenicity of UCNPs have limited their further application in vivo. We have designed UCNPs camouflaged with an exterior red blood cell (RBC) membrane coating (RBC-UCNPs) to solve these problems. Moreover, because of some intrinsic disadvantages of MRI and UCL imaging, we investigated the use of pretargeted RBC-UCNPs for positron-emission tomography (PET) imaging to obtain more comprehensive information. Our data showed that RBC-UCNPs retained the immunity feature from the source cells and the superior optical and chemical features from the pristine UCNP cores. The tumor-targeting ability of RBC-UCNPs was enhanced by binding 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[folate(polyethylene glycol)-2000] (DSPE-PEG-FA) molecules onto the cell membranes. PET imaging with short half-life radionuclides to visualize the RBC-UCNPs was successfully realized by a combination of pre-targeting and in vivo click chemistry. Blood chemistry, hematology, and histologic analysis suggested good in vivo biocompatibility of the RBC-UCNPs. Our method provides a new potential biomedical application of biomimetic nanoparticles.


Assuntos
Membrana Eritrocítica/química , Ácido Fólico/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Animais , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Química Click , Feminino , Fluoretos/química , Gadolínio/química , Humanos , Imageamento por Ressonância Magnética , Camundongos , Imagem Multimodal , Nanopartículas/química , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons , Itérbio/química
8.
Nanomicro Lett ; 12(1): 62, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138297

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer in which the estrogen receptor and progesterone receptor are not expressed, and human epidermal growth factor receptor 2 is not amplified or overexpressed either, which make the clinical diagnosis and treatment very challenging. Molecular imaging can provide an effective way to diagnose TNBC. Upconversion nanoparticles (UCNPs), are a promising new generation of molecular imaging probes. However, UCNPs still need to be improved for tumor-targeting ability and biocompatibility. This study describes a novel probe based on cancer cell membrane-coated upconversion nanoparticles (CCm-UCNPs), owing to the low immunogenicity and homologous-targeting ability of cancer cell membranes, and modified multifunctional UCNPs. This probe exhibits excellent performance in breast cancer molecular classification and TNBC diagnosis through UCL/MRI/PET tri-modality imaging in vivo. By using this probe, MDA-MB-231 was successfully differentiated between MCF-7 tumor models in vivo. Based on the tumor imaging and molecular classification results, the probe is also expected to be modified for drug delivery in the future, contributing to the treatment of TNBC. The combination of nanoparticles with biomimetic cell membranes has the potential for multiple clinical applications.

9.
J Exp Clin Cancer Res ; 38(1): 135, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30909937

RESUMO

AbstractIn the publication of this article [1], there is an error in affiliation 1. The revised affiliation has now been included in this correction.

10.
Contrast Media Mol Imaging ; 2019: 1760184, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787861

RESUMO

Pictilisib (GDC-0941) is an inhibitor of phosphatidylinositol 3-kinase (PI3K), part of a signaling cascade involved in breast cancer development. The purpose of this study was to evaluate the pharmacokinetics of pictilisib noninvasively by radiolabeling it with 11C and to assess the usability of the resulting [11C]-pictilisib as a positron-emission tomography (PET) tracer to screen for pictilisib-sensitive tumors. In this study, pictilisib was radiolabeled with [11C]-methyl iodide to obtain 11C-methylated pictilisib ([11C]-pictilisib) using an automated synthesis module with a high radiolabeling yield. Considerably higher uptake ratios were observed in MCF-7 (PIK3CA mutation, pictilisib-sensitive) cells than those in MDA-MB-231 (PIK3CA wild-type, pictilisib-insensitive) cells at all evaluated time points, indicating good in vitro binding of [11C]-pictilisib. Dynamic micro-PET scans in mice and biodistribution results showed that [11C]-pictilisib was mainly excreted via the hepatobiliary tract into the intestines. MCF-7 xenografts could be clearly visualized on the static micro-PET scans, while MDA-MB-231 tumors could not. Biodistribution results of two xenograft models showed significantly higher uptake and tumor-to-muscle ratios in the MCF-7 xenografts than those in MDA-MB-231 xenografts, exhibiting high in vivo targeting specificity. In conclusion, [11C]-pictilisib was first successfully prepared, and it exhibited good potential to identify pictilisib-sensitive tumors noninvasively, which may have a great impact in the treatment of cancers with an overactive PI3K/Akt/mTOR signal pathway. However, the high activity in hepatobiliary system and intestines needs to be addressed.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Radioisótopos de Carbono , Indazóis , Proteínas de Neoplasias/análise , Fosfatidilinositol 3-Quinases/análise , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Sulfonamidas , Animais , Neoplasias da Mama/patologia , Radioisótopos de Carbono/farmacocinética , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Feminino , Eliminação Hepatobiliar , Xenoenxertos , Humanos , Indazóis/síntese química , Indazóis/farmacocinética , Indazóis/farmacologia , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Transplante de Neoplasias , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Transdução de Sinais , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética , Sulfonamidas/farmacologia , Distribuição Tecidual
11.
J Exp Clin Cancer Res ; 37(1): 306, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30537980

RESUMO

PURPOSE: There has been no satisfactory treatment for advanced melanoma until now. Targeted radionuclide therapy (TRNT) may be a promising option for this heretofore lethal disease. Our goal in this study was to synthesize 131I-N-(2-(diethylamino)ethyl)-5-(iodo-131I)picolinamide (131I-5-IPN) and evaluate its therapeutic ability and toxicity as a radioiodinated melanin-targeting therapeutic agent. METHODS: The trimethylstannyl precursor was synthesized and labeled with 131I to obtain 131I-5-IPN. The pharmacokinetics of 131I-5-IPN was evaluated through SPECT imaging, and its biodistribution was assessed in B16F10 tumor models and in A375 human-to-mouse xenografts. For TRNT, B16F10 melanoma-bearing mice were randomly allocated to receive one of five treatments (n = 10 per group): group A (the control group) received 0.1 mL saline; group B was treated with an equimolar dose of unlabeled precursor; group C received 18.5 MBq of [131I]NaI; group D and E received one or two dose of 18.5 MBq 131I-5-IPN, respectively. TRNT efficacy was evaluated through tumor volume measurement and biology study. The toxic effects of 131I-5-IPN on vital organs were assessed with laboratory tests and histopathological examination. The radiation absorbed dose to vital organs was estimated based on biodistribution data. RESULTS: 131I-5-IPN was successfully prepared with a good radiochemistry yield (55% ± 5%, n = 5), and it exhibited a high uptake ratio in melanin-positive B16F10 cells which indicating high specificity. SPECT imaging and biodistribution of 131I-5-IPN showed lasting high tumor uptake in pigmented B16F10 models for 72 h. TRNT with 131I-5-IPN led to a significant anti-tumor effect and Groups D and E displayed an extended median survival compared to groups A, B, and C. The highest absorbed dose to a vital organ was 0.25 mSv/MBq to the liver; no obvious injury to the liver or kidneys was observed during treatment. 131I-5-IPN treatment was associated with reduction of expression of proliferating cell nuclear antigen (PCNA) and Ki67 and cell cycle blockage in G2/M phase in tumor tissues. Decreased vascular endothelial growth factor and CD31 expression, implying reduced tumor growth, was noted after TRNT. CONCLUSION: We successfully synthesized 131I-5-IPN, which presents long-time retention in melanotic melanoma. TRNT with 131I-5-IPN has the potential to be a safe and effective strategy for management of pigmented melanoma.


Assuntos
Radioisótopos do Iodo/administração & dosagem , Melanoma/radioterapia , Ácidos Picolínicos/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Amidas/administração & dosagem , Amidas/química , Animais , Humanos , Masculino , Melanoma/patologia , Melanoma Amelanótico/radioterapia , Melanoma Experimental/patologia , Melanoma Experimental/radioterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Ácidos Picolínicos/química , Doses de Radiação , Distribuição Aleatória , Neoplasias Cutâneas/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA