Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(36): e2404981, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39075826

RESUMO

Alkaline anion exchange membrane (AEM)-based fuel cells (AEMFCs) and water electrolyzers (AEMWEs) are vital for enabling the efficient and large-scale utilization of hydrogen energy. However, the performance of such energy devices is impeded by the relatively low conductivity of AEMs. The conventional trial-and-error approach to designing membrane structures has proven to be both inefficient and costly. To address this challenge, a fully connected neural network (FCNN) model is developed based on acid-catalyzed AEMs to analyze the relationship between structure and conductivity among 180,000 AEM variations. Under machine learning guidance, anilinium cation-type membranes are designed and synthesized. Molecular dynamics simulations and Mulliken charge population analysis validated that the presence of a large anilinium cation domain is a result of the inductive effect of N+ and benzene rings. The interconnected anilinium cation domains facilitated the formation of a continuous ion transport channel within the AEMs. Additionally, the incorporation of the benzyl electron-withdrawing group heightened the inductive effect, leading to high conductivity AEM variant as screened by the machine learning model. Furthermore, based on the highly active and low-cost monomers given by machine learning, the large-scale synthesis of anilinium-based AEMs confirms the potential for commercial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA