RESUMO
The ability to conceptually mimic biomolecules to construct emergency-functional homospiral aggregates remains a long-standing challenge. Herein, we report artificial homohelical assembly by blending inorganic polyoxometalates (POMs) and organic cyclodextrin molecules. The chiral double-helical chains have been achieved by a left-hand arrangement of trimer-trimer. The trimer is formed by three {Mo8}@α-CD inclusive complexes as a Whittaker-style paddle wheel. During the process of assembly, chiral transfer and amplification from molecule to superstructure were observed. The enantioselective adsorption of the homohelical aggregate toward (R/S)-1,1'-binaphthyl-2,2'-diamine was further demonstrated. The interaction of {Mo8} and α-CD in solution was investigated. This work opens a wide scope for the design of a homohelix, enriching POM-based inorganic-organic materials.
RESUMO
The synthesis of atomically precise semiconductors Ag-S clusters is a subject of intense research interest, yet the formation mechanism of such nanoclusters remains obscure due to their uncontrolled fast nucleation process in solution. Herein, we have investigated the reaction mechanism responsible for {Ag32S3} nucleation using UV, ESI-MS, NMR and SCXRD analyses. Triphenylphosphorus sulfide (PPh3S) was surprisingly found to slow down the kinetic process of the cluster nucleation. Furthermore, a key precursor [Ag2(Ph3PîS)4]2+ was captured, which was attacked by Agn(CîCBut)m and traces of water to generate {Ag32S3}. This mechanism provides valuable new insights into the synthesis of inorganic magic-size clusters.