Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(28): e2318029121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950360

RESUMO

Indonesia has experienced rapid primary forest loss, second only to Brazil in modern history. We examined the fates of Indonesian deforested areas, immediately after clearing and over time, to quantify deforestation drivers in Indonesia. Using time-series satellite data, we tracked degradation and clearing events in intact and degraded natural forests from 1991 to 2020, as well as land use trajectories after forest loss. While an estimated 7.8 Mha (SE = 0.4) of forest cleared during this period had been planted with oil palms by 2020, another 8.8 Mha (SE = 0.4) remained unused. Of the 28.4 Mha (SE = 0.7) deforested, over half were either initially left idle or experienced crop failure before a land use could be detected, and 44% remained unused for 5 y or more. A majority (54%) of these areas were cleared mechanically (not by escaped fires), and in cases where idle lands were eventually converted to productive uses, oil palm plantations were by far the most common outcome. The apparent deliberate creation of idle deforested land in Indonesia and subsequent conversion of idle areas to oil palm plantations indicates that speculation and land banking for palm oil substantially contribute to forest loss, although failed plantations could also contribute to this dynamic. We also found that in Sumatra, few lowland forests remained, suggesting that a lack of remaining forest appropriate for palm oil production, together with an extensive area of banked deforested land, may partially explain slowing forest loss in Indonesia in recent years.


Assuntos
Conservação dos Recursos Naturais , Florestas , Indonésia , Árvores/crescimento & desenvolvimento , Agricultura
2.
Proc Natl Acad Sci U S A ; 116(2): 428-435, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30559198

RESUMO

Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we report an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.1 Mha in 2014. The states of Maranhão, Tocantins, Piauí, Bahia (collectively MATOPIBA), Mato Grosso, Mato Grosso do Sul, and Pará all more than doubled in cropland extent. The states of Goiás, Minas Gerais, and São Paulo each experienced >50% increases. The vast majority of expansion, 79%, occurred on repurposed pasture lands, and 20% was from the conversion of natural vegetation. Area of converted Cerrado savannas was nearly 2.5 times that of Amazon forests, and accounted for more than half of new cropland in MATOPIBA. Spatiotemporal dynamics of cropland expansion reflect market conditions, land use policies, and other factors. Continued extensification of cropland across Brazil is possible and may be likely under current conditions, with attendant benefits for and challenges to development.


Assuntos
Conservação dos Recursos Naturais , Produção Agrícola , Floresta Úmida , Brasil , Humanos
3.
Nat Food ; 3(1): 19-28, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118483

RESUMO

Spatiotemporally consistent data on global cropland extent is essential for tracking progress towards sustainable food production. In the present study, we present an analysis of global cropland area change for the first two decades of the twenty-first century derived from satellite data time-series. We estimate that, in 2019, the cropland area was 1,244 Mha with a corresponding total annual net primary production (NPP) of 5.5 Pg C year-1. From 2003 to 2019, cropland area increased by 9% and cropland NPP by 25%, primarily due to agricultural expansion in Africa and South America. Global cropland expansion accelerated over the past two decades, with a near doubling of the annual expansion rate, most notably in Africa. Half of the new cropland area (49%) replaced natural vegetation and tree cover, indicating a conflict with the sustainability goal of protecting terrestrial ecosystems. From 2003 to 2019, global per-capita cropland area decreased by 10% due to population growth. However, the per-capita annual cropland NPP increased by 3.5% as a result of intensified agricultural land use. The presented global, high-resolution, cropland map time-series supports monitoring of natural land appropriation at the local, national and international levels.

4.
Sci Adv ; 7(14)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33811082

RESUMO

Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent's land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity. Since 1985, the area of natural tree cover decreased by 16%, and pasture, cropland, and plantation land uses increased by 23, 160, and 288%, respectively. A substantial area of disturbed natural land cover, totaling 55 Mha, had no discernable land use, representing land that is degraded in terms of ecosystem function but not economically productive. These results illustrate the extent of ongoing human appropriation of natural ecosystems in South America, which intensifies threats to ecosystem-scale functions.

5.
Nat Sustain ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34377840

RESUMO

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero-deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data. From 2000-2019, the area cultivated with soybean more than doubled from 26.4 Mha to 55.1 Mha. Most soybean expansion occurred on pastures originally converted from natural vegetation for cattle production. The most rapid expansion occurred in the Brazilian Amazon, where soybean area increased more than 10-fold, from 0.4 Mha to 4.6 Mha. Across the continent, 9% of forest loss was converted to soybean by 2016. Soy-driven deforestation was concentrated at the active frontiers, nearly half located in the Brazilian Cerrado. Efforts to limit future deforestation must consider how soybean expansion may drive deforestation indirectly by displacing pasture or other land uses. Holistic approaches that track land use across all commodities coupled with vegetation monitoring are required to maintain critical ecosystem services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA