Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
2.
Microb Pathog ; 186: 106486, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056601

RESUMO

In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (µg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) µg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.


Assuntos
Venenos de Cnidários , Herpesvirus Humano 1 , Chlorocebus aethiops , Animais , Camundongos , Antivirais/farmacologia , Antivirais/química , Células Vero , Timidina Quinase/genética , Timidina Quinase/química , Venenos de Cnidários/farmacologia , Esteroides/farmacologia
3.
J Biol Chem ; 298(3): 101635, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085552

RESUMO

The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi-Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR-Cas9 gene KO or lentiviral viral protein X-mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2-infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.


Assuntos
COVID-19 , Proteína 1 com Domínio SAM e Domínio HD , SARS-CoV-2 , Antivirais/farmacologia , Doenças Autoimunes do Sistema Nervoso , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Humanos , Imunidade Inata , Interferons , Malformações do Sistema Nervoso , RNA Viral , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Replicação Viral/imunologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33122172

RESUMO

Coronavirus disease 2019 (COVID-19) is a serious illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or CoV-2). Some reports claimed certain nucleoside analogs to be active against CoV-2 and thus needed confirmation. Here, we evaluated a panel of compounds and identified novel nucleoside analogs with antiviral activity against CoV-2 and HCoV-OC43 while ruling out others. Of significance, sofosbuvir demonstrated no antiviral effect against CoV-2, and its triphosphate did not inhibit CoV-2 RNA polymerase.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos/métodos , Nucleosídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/química , Antivirais/toxicidade , Linhagem Celular , Chlorocebus aethiops , Coronavirus Humano OC43/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Nucleosídeos/química , Nucleosídeos/toxicidade , Propanolaminas/farmacologia , Sofosbuvir/farmacologia , Células Vero
5.
BMC Infect Dis ; 20(1): 947, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308203

RESUMO

BACKGROUND: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required. METHODS: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay. RESULTS: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P < 0.001). CONCLUSION: The RT-LAMP assay is applicable for the broad coverage detection of both the Asian and African ZIKV strains in resource-deficient settings.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia , Zika virus/classificação , Zika virus/genética , África/epidemiologia , Ásia/epidemiologia , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Infecção por Zika virus/virologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-31262759

RESUMO

Yellow fever virus (YFV) is a human Flavivirus reemerging in parts of the world. While a vaccine is available, large outbreaks have recently occurred in Brazil and certain African countries. Development of an effective antiviral against YFV is crucial, as there is no available effective drug against YFV. We have identified several novel nucleoside analogs with potent antiviral activity against YFV with 50% effective concentration (EC50) values between 0.25 and 1 µM with selectivity indices over 100 in culture.


Assuntos
Antivirais/uso terapêutico , Nucleosídeos/análogos & derivados , Nucleosídeos/uso terapêutico , Febre Amarela/tratamento farmacológico , Vírus da Febre Amarela/efeitos dos fármacos , Vírus da Febre Amarela/patogenicidade , África , Animais , Brasil , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Estrutura Molecular , Células Vero , Febre Amarela/virologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31061163

RESUMO

Dengue virus (DENV) and Japanese encephalitis virus (JEV) are important arthropod-borne viruses from the Flaviviridae family. DENV is a global public health problem with significant social and economic impacts, especially in tropical and subtropical areas. JEV is a neurotropic arbovirus endemic to east and southeast Asia. There are no U.S. FDA-approved antiviral drugs available to treat or to prevent DENV and JEV infections, leaving nearly one-third of the world's population at risk for infection. Therefore, it is crucial to discover potent antiviral agents against these viruses. Nucleoside analogs, as a class, are widely used for the treatment of viral infections. In this study, we discovered nucleoside analogs that possess potent and selective anti-JEV and anti-DENV activities across all serotypes in cell-based assay systems. Both viruses were susceptible to sugar-substituted 2'-C-methyl analogs with either cytosine or 7-deaza-7-fluoro-adenine nucleobases. Mouse studies confirmed the anti-DENV activity of these nucleoside analogs. Molecular models were assembled for DENV serotype 2 (DENV-2) and JEV RNA-dependent RNA polymerase replication complexes bound to nucleotide inhibitors. These models show similarities between JEV and DENV-2, which recognize the same nucleotide inhibitors. Collectively, our findings provide promising compounds and a structural rationale for the development of direct-acting antiviral agents with dual activity against JEV and DENV infections.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Nucleosídeos/análogos & derivados , Animais , Antivirais/química , Chlorocebus aethiops , Dengue/sangue , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Vírus da Encefalite Japonesa (Subgrupo)/genética , Vírus da Encefalite Japonesa (Subgrupo)/fisiologia , Encefalite por Arbovirus/tratamento farmacológico , Camundongos , Modelos Moleculares , Nucleosídeos/química , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 29(20): 126639, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31493987

RESUMO

Exploration of the chemical space of known influenza polymerase PB2 inhibitor Pimodivir, was performed by our group. We synthesized and identified compounds 16a and 16b, two novel thienopyrimidine derivatives displaying anti-influenza A activity in the single digit nanomolar range in cell culture. Binding of these unique compounds in the influenza polymerase PB2 pocket was also determined using molecular modeling.


Assuntos
Antivirais/química , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Piridinas/química , Pirimidinas/química , Pirróis/química , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/metabolismo , Células A549 , Sequência de Aminoácidos , Animais , Antivirais/farmacologia , Descoberta de Drogas , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Piridinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
9.
Arch Virol ; 164(2): 585-593, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30392049

RESUMO

At present, there is no effective antiviral agent for Zika virus (ZIKV), an arbovirus that is known for its teratogenic effects on newborns. Baicalein and baicalin were found to be capable of downregulating ZIKV replication up to 10 hours postinfection, while prophylactic effects were evident in pre-treated cells. Baicalein exhibited its highest potency during intracellular ZIKV replication, whereas baicalin was most effective against virus entry. Our in silico interaction assays predicted that both compounds exhibited the strongest binding affinities towards ZIKV NS5, while the virus envelope glycoprotein was the least likely target protein. These findings serve as a crucial platform for further in-depth studies to decipher the underlying anti-ZIKV mechanism(s) of each compound.


Assuntos
Antivirais/farmacologia , Flavanonas/farmacologia , Flavonoides/farmacologia , Infecção por Zika virus/virologia , Zika virus/efeitos dos fármacos , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Zika virus/genética , Zika virus/crescimento & desenvolvimento , Zika virus/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-28137799

RESUMO

Chikungunya virus (CHIKV) represents a reemerging global threat to human health. Recent outbreaks across Asia, Europe, Africa, and the Caribbean have prompted renewed scientific interest in this mosquito-borne alphavirus. There are currently no vaccines against CHIKV, and treatment has been limited to nonspecific antiviral agents, with suboptimal outcomes. Herein, we have identified ß-d-N4-hydroxycytidine (NHC) as a novel inhibitor of CHIKV. NHC behaves as a pyrimidine ribonucleoside and selectively inhibits CHIKV replication in cell culture.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Citidina/análogos & derivados , Animais , Linhagem Celular , Citidina/farmacologia , Humanos , Replicação Viral/efeitos dos fármacos
11.
J Antimicrob Chemother ; 72(9): 2438-2442, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28666323

RESUMO

Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes. Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains. Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins. Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Celecoxib/química , Chlorocebus aethiops , Dengue/tratamento farmacológico , Dengue/virologia , Descoberta de Drogas , Proteínas de Choque Térmico/metabolismo , Simulação de Acoplamento Molecular , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Sorogrupo , Células Vero
12.
Arch Virol ; 162(9): 2539-2551, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28547385

RESUMO

Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.


Assuntos
Antivirais/farmacologia , Flavonoides/farmacologia , Viroses/tratamento farmacológico , Animais , Antivirais/química , Flavonoides/química , Flavonoides/metabolismo , Humanos , Estrutura Molecular , Plantas/química , Plantas/metabolismo
13.
Tumour Biol ; 37(8): 10021-39, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27155851

RESUMO

Resistance to chemotherapy agents is a major challenge infront of cancer patient treatment and researchers. It is known that several factors, such as multidrug resistance proteins and ATP-binding cassette families, are cell membrane transporters that can efflux several substrates such as chemotherapy agents from the cell cytoplasm. To reduce the adverse effects of chemotherapy agents, various targeted-based cancer therapy (TBCT) agents have been developed. TBCT has revolutionized cancer treatment, and several agents have shown more specific effects on tumor cells than chemotherapies. Small molecule inhibitors and monoclonal antibodies are specific agents that mostly target tumor cells but have low side effects on normal cells. Although these agents have been very useful for cancer treatment, however, the presence of natural and acquired resistance has blunted the advantages of targeted therapies. Therefore, development of new options might be necessary. A better understanding of tumor cell resistance mechanisms to current treatment agents may provide an appropriate platform for developing and improving new treatment modalities. Therefore, in this review, different mechanisms of tumor cell resistance to chemotherapy drugs and current targeted therapies have been described.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Antineoplásicos/uso terapêutico , Apoptose , Biotransformação/genética , Cronofarmacocinética , Metilação de DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/fisiologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Genes MDR , Humanos , Terapia de Alvo Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral
14.
Apoptosis ; 20(4): 466-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25577277

RESUMO

Persistent hepatitis C virus (HCV) infection appears to trigger the onset of immune exhaustion to potentially assist viral persistence in the host, eventually leading to hepatocellular carcinoma. The role of HCV on the spontaneous expression of markers suggestive of immune exhaustion and spontaneous apoptosis in immune cells of chronic HCV (CHC) disease largely remain elusive. We investigated the peripheral blood mononuclear cells of CHC patients to determine the spontaneous recruitment of cellular reactive oxygen species (cROS), immunoregulatory and exhaustion markers relative to healthy controls. Using a commercial QuantiGenePlex(®) 2.0 assay, we determined the spontaneous expression profile of 80 different pro- and anti-apoptotic genes in persistent HCV disease. Onset of spontaneous apoptosis significantly correlated with the up-regulation of cROS, indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2/prostaglandin H synthase (COX-2/PGHS), Foxp3, Dtx1, Blimp1, Lag3 and Cd160. Besides, spontaneous differential surface protein expression suggestive of T cell inhibition viz., TRAIL, TIM-3, PD-1 and BTLA on CD4+ and CD8+ T cells, and CTLA-4 on CD4+ T cells was also evident. Increased up-regulation of Tnf, Tp73, Casp14, Tnfrsf11b, Bik and Birc8 was observed, whereas FasLG, Fas, Ripk2, Casp3, Dapk1, Tnfrsf21, and Cflar were moderately up-regulated in HCV-infected subjects. Our observation suggests the spontaneous onset of apoptosis signaling and T cell exhaustion in chronic HCV disease.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose , Hepacivirus/fisiologia , Hepatite C Crônica/genética , Hepatite C Crônica/fisiopatologia , Leucócitos Mononucleares/citologia , Linfócitos T/citologia , Adulto , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Hepatite C Crônica/metabolismo , Hepatite C Crônica/virologia , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo
15.
BMC Public Health ; 15: 704, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26205588

RESUMO

BACKGROUND: Tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV) are important tick-borne viruses. Despite their wide geographical distribution and ease of acquisition, the prevalence of both viruses in Malaysia is still unknown. This study was conducted to determine the seroprevalence for TBEV and CCHFV among Malaysian farm workers as a high-risk group within the population. METHODS: We gave questionnaires to 209 farm workers and invited them to participate in the study. Eighty-five agreed to do so. We then collected and tested sera for the presence of anti-TBEV IgG (immunoglobulin G) and anti-CCHFV IgG using a commercial enzyme-linked immunosorbent assay (ELISA) kit. We also tested seroreactive samples against three other related flaviviruses: dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) using the ELISA method. RESULTS: The preliminary results showed the presence of anti-TBEV IgG in 31 (36.5%) of 85 sera. However, when testing all the anti-TBEV IgG positive sera against the other three antigenically related flaviviruses to exclude possible cross reactivity, only five (4.2%) sera did not show any cross reactivity. Interestingly, most (70.97%) seropositives subjects mentioned tick-bite experience. However, there was no seroreactive sample for CCHFV. CONCLUSIONS: These viruses migrate to neighbouring countries so they should be considered threats for the future, despite the low seroprevalence for TBEV and no serological evidence for CCHFV in this study. Therefore, further investigation involving a large number of human, animal and tick samples that might reveal the viruses' true prevalence is highly recommended.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Fazendeiros , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/sangue , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Picadas de Carrapatos/epidemiologia , Vírus do Nilo Ocidental/imunologia
16.
Mar Drugs ; 13(7): 4520-38, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26204947

RESUMO

Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.


Assuntos
Antivirais/isolamento & purificação , Organismos Aquáticos/química , Fungos/química , Animais , Antivirais/farmacologia , HIV/efeitos dos fármacos , Humanos , Vírus do Molusco Contagioso/efeitos dos fármacos , Orthomyxoviridae/efeitos dos fármacos , Vírus da Síndrome Respiratória e Reprodutiva Suína/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Simplexvirus/efeitos dos fármacos , Vírus do Mosaico do Tabaco/efeitos dos fármacos
17.
ScientificWorldJournal ; 2014: 768323, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24526922

RESUMO

Seaweed is one of the largest producers of biomass in marine environment and is a rich arsenal of active metabolites and functional ingredients with valuable beneficial health effects. Being a staple part of Asian cuisine, investigations on the crude extracts of Phaeophyceae or brown algae revealed marked antitumor activity, eliciting a variety of research to determine the active ingredients involved in this potential. The sulfated polysaccharide of fucoidan and carotenoid of fucoxanthin were found to be the most important active metabolites of brown algae as potential chemotherapeutic or chemopreventive agents. This review strives to provide detailed account of all current knowledge on the anticancer and antitumor activity of fucoidan and fucoxanthin as the two major metabolites isolated from brown algae.


Assuntos
Antineoplásicos/metabolismo , Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Xantofilas/metabolismo , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/patologia , Humanos , Células Jurkat , Células K562 , Polissacarídeos/isolamento & purificação , Polissacarídeos/uso terapêutico , Xantofilas/isolamento & purificação , Xantofilas/uso terapêutico
18.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260306

RESUMO

While breakthroughs with organoids have emerged as next-generation in vitro tools, standardization for drug discovery remains a challenge. This work introduces human airway organoids with reversed biopolarity (AORBs), cultured and analyzed in a high-throughput, single-organoid-per-well format, enabling milestones towards standardization. AORBs exhibit a spatio-temporally stable apical-out morphology, facilitating high-yield direct intact-organoid virus infection. Single-cell RNA sequencing and immunohistochemistry confirm the physiologically relevant recapitulation of differentiated human airway epithelia. The cellular tropism of five severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains along with host response differences between Delta, Washington, and Omicron variants, as observed in transcriptomic profiles, also suggest clinical relevance. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds (remdesivir, bemnifosbuvir, and nirmatrelvir) demonstrates that AORBs efficiently predict human efficacy, comparable to gold-standard air-liquid interface cultures, but with higher throughput (∼10-fold) and fewer cells (∼100-fold). This combination of throughput and relevance allows AORBs to robustly detect false negative results in efficacy, preventing irretrievable loss of promising lead compounds. While this work leverages the SARS-CoV-2 study as a proof-of-concept application, the standardization capacity of AORB holds broader implications in line with regulatory efforts to push alternatives to animal studies.

19.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675992

RESUMO

Most repurposed drugs have proved ineffective for treating COVID-19. We evaluated median effective and toxic concentrations (EC50, CC50) of 49 drugs, mostly from previous clinical trials, in Vero cells. Ratios of reported unbound peak plasma concentrations, (Cmax)/EC50, were used to predict the potential in vivo efficacy. The 20 drugs with the highest ratios were retested in human Calu-3 and Caco-2 cells, and their CC50 was determined in an expanded panel of cell lines. Many of the 20 drugs with the highest ratios were inactive in human Calu-3 and Caco-2 cells. Antivirals effective in controlled clinical trials had unbound Cmax/EC50 ≥ 6.8 in Calu-3 or Caco-2 cells. EC50 of nucleoside analogs were cell dependent. This approach and earlier availability of more relevant cultures could have reduced the number of unwarranted clinical trials.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , SARS-CoV-2 , Antivirais/uso terapêutico , Antivirais/farmacologia , Humanos , SARS-CoV-2/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Células CACO-2 , Animais , COVID-19/virologia
20.
Eur J Med Chem ; 268: 116263, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432056

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and related variants, are responsible for the devastating coronavirus disease 2019 (COVID-19) pandemic. The SARS-CoV-2 main protease (Mpro) plays a central role in the replication of the virus and represents an attractive drug target. Herein, we report the discovery of novel SARS-CoV-2 Mpro covalent inhibitors, including highly effective compound NIP-22c which displays high potency against several key variants and clinically relevant nirmatrelvir Mpro E166V mutants.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , Peptidomiméticos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Cisteína Endopeptidases , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA