Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 32(7): 2223-2231, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796702

RESUMO

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [18F]fluoroestradiol ([18F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain. The ChRERα gene and shRNA were expressed from the same transcript via lentivirus injected into monkey striatum. In two monkeys that received injections of viral vector, [18F]FES binding increased by 70% and 86% at the target sites compared with pre-injection, demonstrating that ChRERα expression could be visualized in vivo with PET imaging. Post-mortem immunohistochemistry confirmed that ChAT expression was significantly suppressed in regions in which [18F]FES uptake was increased. The consistency between PET imaging and immunohistochemical results suggests that [18F]FES and ChRERα can serve as a PET reporter system in rhesus monkey brain for in vivo evaluation of the expression of potential therapeutic agents, such as shRNAs.


Assuntos
Encéfalo , Estradiol , Genes Reporter , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Tomografia por Emissão de Pósitrons/métodos , Estradiol/análogos & derivados , Estradiol/farmacologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Flúor , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Expressão Gênica , RNA Interferente Pequeno/genética , Lentivirus/genética , Humanos
2.
Eur J Nucl Med Mol Imaging ; 50(10): 2962-2970, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249618

RESUMO

PURPOSE: [18F]SF51 was previously found to have high binding affinity and selectivity for 18 kDa translocator protein (TSPO) in mouse brain. This study sought to assess the ability of [18F]SF51 to quantify TSPO in rhesus monkey brain. METHODS: Positron emission tomography (PET) imaging was performed in monkey brain (n = 3) at baseline and after pre-blockade with the TSPO ligands PK11195 and PBR28. TSPO binding was calculated as total distribution volume corrected for free parent fraction in plasma (VT/fP) using a two-tissue compartment model. Receptor occupancy and nondisplaceable uptake were determined via Lassen plot. Binding potential (BPND) was calculated as the ratio of specific binding to nondisplaceable uptake. Time stability of VT was used as an indirect probe to detect radiometabolite accumulation in the brain. In vivo and ex vivo experiments were performed in mice to determine the distribution of the radioligand. RESULTS: After [18F]SF51 injection, the concentration of brain radioactivity peaked at 2.0 standardized uptake value (SUV) at ~ 10 min and declined to 30% of the peak at 180 min. VT/fP at baseline was generally high (203 ± 15 mL· cm-3) and decreased by ~ 90% after blockade with PK11195. BPND of the whole brain was 7.6 ± 4.3. VT values reached levels similar to terminal 180-min values by 100 min and remained relatively stable thereafter with excellent identifiability (standard errors < 5%), suggesting that no significant radiometabolites accumulated in the brain. Ex vivo experiments in mouse brain showed that 96% of radioactivity was parent. No significant uptake was observed in the skull, suggesting a lack of defluorination in vivo. CONCLUSION: The results demonstrate that [18F]SF51 is an excellent radioligand that can quantify TSPO with a good ratio of specific to nondisplaceable uptake and has minimal radiometabolite accumulation in brain. Collectively, the results suggest that [18F]SF51 warrants further evaluation in humans.


Assuntos
Encéfalo , Receptores de GABA , Humanos , Camundongos , Animais , Receptores de GABA/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Transporte/metabolismo , Ligação Proteica , Compostos Radiofarmacêuticos/metabolismo
3.
Brain ; 144(5): 1565-1575, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33824991

RESUMO

Despite epidemiological and genetic data linking semantic dementia to inflammation, the topography of neuroinflammation in semantic dementia, also known as the semantic variant of primary progressive aphasia, remains unclear. The pathology starts at the tip of the left temporal lobe where, in addition to cortical atrophy, a strong signal appears with the tau PET tracer 18F-flortaucipir, even though the disease is not typically associated with tau but with TDP-43 protein aggregates. Here, we characterized the topography of inflammation in semantic variant primary progressive aphasia using high-resolution PET and the tracer 11C-PBR28 as a marker of microglial activation. We also tested the hypothesis that inflammation, by providing non-specific binding targets, could explain the 18F-flortaucipir signal in semantic variant primary progressive aphasia. Eight amyloid-PET-negative patients with semantic variant primary progressive aphasia underwent 11C-PBR28 and 18F-flortaucipir PET. Healthy controls underwent 11C-PBR28 PET (n = 12) or 18F-flortaucipir PET (n = 12). Inflammation in PET with 11C-PBR28 was analysed using Logan graphical analysis with a metabolite-corrected arterial input function. 18F-flortaucipir standardized uptake value ratios were calculated using the cerebellum as the reference region. Since monoamine oxidase B receptors are expressed by astrocytes in affected tissue, selegiline was administered to one patient with semantic variant primary progressive aphasia before repeating 18F-flortaucipir scanning to test whether monoamine oxidase B inhibition blocked flortaucipir binding, which it did not. While 11C-PBR28 uptake was mostly cortical, 18F-flortaucipir uptake was greatest in the white matter. The uptake of both tracers was increased in the left temporal lobe and in the right temporal pole, as well as in regions adjoining the left temporal pole such as insula and orbitofrontal cortex. However, peak uptake of 18F-flortaucipir localized to the left temporal pole, the epicentre of pathology, while the peak of inflammation 11C-PBR28 uptake localized to a more posterior, mid-temporal region and left insula and orbitofrontal cortex, in the periphery of the damage core. Neuroinflammation, greatest in the areas of progression of the pathological process in semantic variant primary progressive aphasia, should be further studied as a possible therapeutic target to slow disease progression.


Assuntos
Afasia Primária Progressiva/patologia , Encéfalo/patologia , Inflamação/patologia , Idoso , Afasia Primária Progressiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Progressão da Doença , Feminino , Humanos , Inflamação/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos
4.
Eur J Nucl Med Mol Imaging ; 49(1): 257-268, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33779770

RESUMO

PURPOSE: This technical note seeks to act as a practical guide for implementing a supervised clustering algorithm (SVCA) reference region approach and to explain the main strengths and limitations of the technique in the context of 18-kilodalton translocator protein (TSPO) positron emission tomography (PET) studies in experimental medicine. BACKGROUND: TSPO PET is the most widely used imaging technique for studying neuroinflammation in vivo in humans. Quantifying neuroinflammation with PET can be a challenging and invasive procedure, especially in frail patients, because it often requires blood sampling from an arterial catheter. A widely used alternative to arterial sampling is SVCA, which identifies the voxels with minimal specific binding in the PET images, thus extracting a pseudo-reference region for non-invasive quantification. Unlike other reference region approaches, SVCA does not require specification of an anatomical reference region a priori, which alleviates the limitation of TSPO contamination in anatomically-defined reference regions in individuals with underlying inflammatory processes. Furthermore, SVCA can be applied to any TSPO PET tracer across different neurological and neuropsychiatric conditions, providing noninvasivequantification of TSPO expression. METHODS: We provide an overview of the development of SVCA as well as step-by-step instructions for implementing SVCA with suggestions for specific settings. We review the literature on SVCAapplications using first- and second- generation TSPO PET tracers and discuss potential clinically relevant limitations and applications. CONCLUSIONS: The correct implementation of SVCA can provide robust and reproducible estimates of brain TSPO expression. This review encourages the standardisation of SVCA methodology in TSPO PET analysis, ultimately aiming to improve replicability and comparability across study sites.


Assuntos
Pirimidinas , Receptores de GABA , Análise por Conglomerados , Humanos , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
5.
Eur J Nucl Med Mol Imaging ; 49(1): 246-256, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33693967

RESUMO

PURPOSE: Translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET) is widely used in research studies of brain diseases that have a neuro-immune component. Quantification of TSPO PET images, however, is associated with several challenges, such as the lack of a reference region, a genetic polymorphism affecting the affinity of the ligand for TSPO, and a strong TSPO signal in the endothelium of the brain vessels. These challenges have created an ongoing debate in the field about which type of quantification is most useful and whether there is an appropriate simplified model. METHODS: This review focuses on the quantification of TSPO radioligands in the human brain. The various methods of quantification are summarized, including the gold standard of compartmental modeling with metabolite-corrected input function as well as various alternative models and non-invasive approaches. Their advantages and drawbacks are critically assessed. RESULTS AND CONCLUSIONS: Researchers employing quantification methods for TSPO should understand the advantages and limitations associated with each method. Suggestions are given to help researchers choose between these viable alternative methods.


Assuntos
Compostos Radiofarmacêuticos , Receptores de GABA , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Tomografia Computadorizada por Raios X
6.
Mov Disord ; 36(1): 246-251, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956556

RESUMO

BACKGROUND: Loss of medullary serotonin (5-hydroxytryptamine) neurons has been linked to respiratory disturbances in multiple system atrophy (MSA). Broader 5-hydroxytryptamine dysfunction may contribute to additional motor/nonmotor symptoms in MSA. The objective of this study was to compare brain 5-hydroxytryptamine1A receptor binding between MSA and healthy controls. Secondary objectives were to compare 5-hydroxytryptamine1A receptor binding between MSA and Parkinson's disease (PD) and to assess potential associations with motor/nonmotor symptoms in MSA. METHODS: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine positron emission tomography was performed in matched MSA patients (n = 16), PD patients (n = 15), and healthy controls (n = 18). RESULTS: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine distribution volume ratios were lower in MSA patients versus healthy controls in several brain regions including the caudate, raphe nuclei, thalamus, and brain stem. Distribution volume ratios were also lower in brain stem and amygdala in MSA versus PD. Moderate associations were found between 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine distribution volume ratios and fatigue, pain, and apathy in MSA. CONCLUSION: Our results demonstrate 5-hydroxytryptamine dysfunction in several brain regions in MSA, which may contribute to fatigue, pain, and apathy. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Receptor 5-HT1A de Serotonina , Encéfalo/diagnóstico por imagem , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
7.
Bioconjug Chem ; 31(10): 2339-2349, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32887526

RESUMO

Several independent studies have demonstrated the overexpression of NTS1 in various malignancies, which make this receptor of interest for imaging and therapy. To date, radiolabeled neurotensin analogues suffer from low plasmatic stability and thus insufficient availability for high uptake in tumors. We report the development of 68Ga-radiolabeled neurotensin analogues with improved radiopharmaceutical properties through the introduction of the silicon-containing amino acid trimethylsilylalanine (TMSAla). Among the series of novel radiolabeled neurotensin analogues, [68Ga]Ga-JMV6659 exhibits high hydrophilicity (log D7.4 = -3.41 ± 0.14), affinity in the low nanomolar range toward NTS1 (Kd = 6.29 ± 1.37 nM), good selectivity (Kd NTS1/Kd NTS2 = 35.9), and high NTS1-mediated internalization. It has lower efflux and prolonged plasmatic half-life in human plasma as compared to the reference compound ([68Ga]Ga-JMV6661 bearing the minimum active fragment of neurotensin and the same linker and chelate as other analogues). In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV6659 uptake reached 7.8 ± 0.54 %ID/g 2 h post injection. Uptake was decreased to 1.38 ± 0.71 %ID/g with injection of excess of non-radioactive neurotensin. Radiation dose as extrapolated to human was estimated as 2.35 ± 0.6 mSv for a standard injected activity of 100MBq. [68Ga]Ga-JMV6659 was identified as a promising lead compound suitable for PET imaging of NTS1-expressing tumors.


Assuntos
Neoplasias/diagnóstico por imagem , Neurotensina/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Receptores de Neurotensina/análise , Silício/química , Animais , Células HT29 , Humanos , Camundongos Nus
8.
Eur J Nucl Med Mol Imaging ; 46(9): 1822-1829, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31152207

RESUMO

INTRODUCTION: 11C-ER176 is a new PET tracer to quantify the translocator protein (TSPO), a biomarker for inflammation. The aim of this study was to perform a head-to-head comparison between 11C-ER176 and the widely used 11C-PBR28. METHODS: Seven healthy volunteers had a 90-min PET scan and metabolite-corrected arterial input function with 11C-PBR28 in the morning and 11C-ER176 in the afternoon. Binding was quantified at the regional level in terms of VT with a two-tissue compartmental model. By using VND values from the literature obtained with pharmacological blockade, we derived the binding potential BPND for both tracers. RESULTS: 11C-ER176 was more stable in arterial blood than 11C-PBR28 (the percentages of unmetabolized parent in plasma at 90 min were 29.0 ± 8.3% and 8.8 ± 2.9% respectively). The brain time-activity curves for both tracers were well fitted by the two-tissue model, but 11C-ER176 had higher VT values than 11C-PBR28 (5.74 ± 1.54 vs 4.43 ± 1.99 ml/cm3) and a lower coefficient of variation. The BPND of 11C-ER176 was more than 4 times larger than that of 11C-PBR28 for high-affinity binders, and more than 9 times larger for mixed-affinity binders. CONCLUSION: 11C-ER176 displays a higher binding potential and a smaller variability of VT values. Thanks to these characteristics, clinical studies performed with 11C-ER176 are expected to have higher statistical power and thus require fewer subjects.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/métodos , Pirimidinas , Quinazolinas , Receptores de GABA/metabolismo , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Epilepsia ; 60(6): 1248-1254, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31144767

RESUMO

OBJECTIVES: Neuroinflammation, implicated in epilepsy, can be imaged in humans with positron emission tomography (PET) ligands for translocator protein 18 kDa (TSPO). Previous studies in patients with temporal lobe epilepsy and mesial temporal sclerosis found increased [11C]PBR28 uptake ipsilateral to seizure foci. Neocortical foci present more difficult localization problems and more variable underlying pathology. METHODS: We studied 11 patients with neocortical seizure foci using [11C]PBR28 or [11C] N,N-diethyl-2-(4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidine-3-acetamide (DPA) 713, and 31 healthy volunteers. Seizure foci were identified with structural magnetic resonance imaging (MRI) and ictal video-electroencephalography (EEG) monitoring. Six patients had surgical resections; five had focal cortical dysplasia type 2A or B and one microdysgenesis. Brain regions were delineated using FreeSurfer and T1-weighted MRI. We measured brain radioligand uptake (standardized uptake values [SUVs]) in ipsilateral and contralateral regions, to compare calculated asymmetry indices [AIs; 200% *(ipsilateral - contralateral)/(ipsilateral + contralateral)] between epilepsy patients and controls, as well as absolute [11C]PBR28 binding as the ratio of distribution volume to free fraction (VT /fP ) in 9 patients (5 high affinity and 4 medium affinity binders) and 11 age-matched volunteers (5 high-affinity and 6 medium affinity) who had metabolite-corrected arterial input functions measured. RESULTS: Nine of 11 patients had AIs exceeding control mean 95% confidence intervals in at least one region consistent with the seizure focus. Three of the nine had normal MRI. There was a nonsignificant trend for patients to have higher binding than volunteers both ipsilateral and contralateral to the focus in the group that had absolute binding measured. SIGNIFICANCE: Our study demonstrates the presence of focal and distributed inflammation in neocortical epilepsy. There may be a role for TSPO PET for evaluation of patients with suspected neocortical seizure foci, particularly when other imaging modalities are unrevealing. However, a complex method, inherent variability, and increased binding in regions outside seizure foci will limit applicability.


Assuntos
Epilepsia/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Neocórtex/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Acetamidas , Adulto , Idade de Início , Eletroencefalografia , Epilepsia/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neocórtex/cirurgia , Procedimentos Neurocirúrgicos/métodos , Piridinas , Compostos Radiofarmacêuticos , Adulto Jovem
11.
Neuroimage ; 130: 1-12, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26850512

RESUMO

PET studies allow in vivo imaging of the density of brain receptor species. The PET signal, however, is the sum of the fraction of radioligand that is specifically bound to the target receptor and the non-displaceable fraction (i.e. the non-specifically bound radioligand plus the free ligand in tissue). Therefore, measuring the non-displaceable fraction, which is generally assumed to be constant across the brain, is a necessary step to obtain regional estimates of the specific fractions. The nondisplaceable binding can be directly measured if a reference region, i.e. a region devoid of any specific binding, is available. Many receptors are however widely expressed across the brain, and a true reference region is rarely available. In these cases, the nonspecific binding can be obtained after competitive pharmacological blockade, which is often contraindicated in humans. In this work we introduce the genomic plot for estimating the nondisplaceable fraction using baseline scans only. The genomic plot is a transformation of the Lassen graphical method in which the brain maps of mRNA transcripts of the target receptor obtained from the Allen brain atlas are used as a surrogate measure of the specific binding. Thus, the genomic plot allows the calculation of the specific and nondisplaceable components of radioligand uptake without the need of pharmacological blockade. We first assessed the statistical properties of the method with computer simulations. Then we sought ground-truth validation using human PET datasets of seven different neuroreceptor radioligands, where nonspecific fractions were either obtained separately using drug displacement or available from a true reference region. The population nondisplaceable fractions estimated by the genomic plot were very close to those measured by actual human blocking studies (mean relative difference between 2% and 7%). However, these estimates were valid only when mRNA expressions were predictive of protein levels (i.e. there were no significant post-transcriptional changes). This condition can be readily established a priori by assessing the correlation between PET and mRNA expression.


Assuntos
Mapeamento Encefálico/métodos , Modelos Teóricos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/análise , Simulação por Computador , Humanos
12.
Biochem Soc Trans ; 43(4): 586-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26551697

RESUMO

The 18-kDA translocator protein (TSPO) is consistently elevated in activated microglia of the central nervous system (CNS) in response to a variety of insults as well as neurodegenerative and psychiatric conditions. It is therefore a target of interest for molecular strategies aimed at imaging neuroinflammation in vivo. For more than 20 years, positron emission tomography (PET) has allowed the imaging of TSPO density in brain using [(11)C]-(R)-PK11195, a radiolabelled-specific antagonist of the TSPO that has demonstrated microglial activation in a large number pathological cohorts. The significant clinical interest in brain immunity as a primary or comorbid factor in illness has sparked great interest in the TSPO as a biomarker and a surprising number of second generation TSPO radiotracers have been developed aimed at improving the quality of TSPO imaging through novel radioligands with higher affinity. However, such major investment has not yet resulted in the expected improvement in image quality. We here review the main methodological aspects of TSPO PET imaging with particular attention to TSPO genetics, cellular heterogeneity of TSPO in brain tissue and TSPO distribution in blood and plasma that need to be considered in the quantification of PET data to avoid spurious results as well as ineffective development and use of these radiotracers.


Assuntos
Microglia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo , Humanos , Isoquinolinas/farmacologia , Tomografia por Emissão de Pósitrons/instrumentação , Receptores de GABA/sangue , Receptores de GABA/genética
15.
J Nucl Med ; 65(5): 788-793, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423785

RESUMO

Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [11C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites. Methods: We selected 5 high-affinity and selective PDE4D inhibitors, absent of a nitro group, from our prior structure-activity relationship study for evaluation as PET radioligands. Results: All 5 radioligands were labeled with 11C (half-time, 20.4 min) in useful yields and with high molar activity. All displayed sizable PDE4D-specific signals in rhesus monkey brain. Notably, [11C]JMJ-81 and [11C]JMJ-129 exhibited excellent time stability of signal (total volume of distribution). Furthermore, as an example, [11C]JMJ-81 was found to be free of radiometabolites in ex vivo monkey brain, affirming that this radioligand can provide robust quantification of brain PDE4D with PET. Conclusion: Given their high similarity in structures and metabolic profiles, both [11C]JMJ-81 and [11C]JMJ-129 warrant further evaluation in human subjects. [11C]JMJ-129 shows a higher PDE4D specific-to-nonspecific binding ratio and will be the first to be evaluated.


Assuntos
Encéfalo , Radioisótopos de Carbono , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Macaca mulatta , Tomografia por Emissão de Pósitrons , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Ligantes , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química , Masculino , Marcação por Isótopo , Inibidores da Fosfodiesterase 4/química , Humanos
16.
Eur J Nucl Med Mol Imaging ; 40(2): 245-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135321

RESUMO

PURPOSE: Two allosteric modulators of the group I metabotropic glutamate receptors (mGluR1 and mGluR5) were evaluated as positron emission tomography (PET) radioligands for mGluR1. METHODS: LY2428703, a full mGluR1 antagonist (IC(50) 8.9 nM) and partial mGluR5 antagonist (IC(50) 118 nM), and LSN2606428, a full mGluR1 and mGluR5 antagonist (IC(50) 35.3 nM and 10.2 nM, respectively) were successfully labeled with (11)C and evaluated as radioligands for mGluR1. The pharmacology of LY2428703 was comprehensively assessed in vitro and in vivo, and its biodistribution was investigated by liquid chromatography-mass spectrometry/mass spectrometry, and by PET imaging in the rat. In contrast, LSN2606428 was only evaluated in vitro; further evaluation was stopped due to its unfavorable pharmacological properties and binding affinity. RESULTS: (11)C-LY2428703 showed promising characteristics, including: (1) high potency for binding to human mGluR1 (IC(50) 8.9 nM) with no significant affinity for other human mGlu receptors (mGluR2 through mGluR8); (2) binding to brain displaceable by administration of an mGluR1 antagonist; (3) only one major radiometabolite in both plasma and brain, with a negligible brain concentration (with 3.5 % of the total radioactivity in cerebellum) and no receptor affinity; (4) a large specific and displaceable signal in the mGluR1-rich cerebellum with no significant in vivo affinity for mGluR5, as shown by PET studies in rats; and (5) lack of substrate behavior for efflux transporters at the blood-brain barrier, as shown by PET studies conducted in wild-type and knockout mice. CONCLUSION: (11)C-LY2428703, a new PET radioligand for mGluR1 quantification, displayed promising characteristics both in vitro and in vivo in rodents.


Assuntos
Encéfalo/patologia , Isótopos de Carbono/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Receptores de Glutamato Metabotrópico/metabolismo , Sítio Alostérico , Animais , Barreira Hematoencefálica , Cromatografia Líquida/métodos , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos , Camundongos Knockout , Modelos Químicos , Ratos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
17.
J Nucl Med ; 64(1): 159-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35798558

RESUMO

Both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) convert arachidonic acid to prostaglandin H2, which has proinflammatory effects. The recently developed PET radioligand 11C-PS13 has excellent in vivo selectivity for COX-1 over COX-2 in nonhuman primates. This study sought to evaluate the selectivity of 11C-PS13 binding to COX-1 in humans and assess the utility of 11C-PS13 to measure the in vivo potency of nonsteroidal antiinflammatory drugs. Methods: Baseline 11C-PS13 whole-body PET scans were obtained for 26 healthy volunteers, followed by blocked scans with ketoprofen (n = 8), celecoxib (n = 8), or aspirin (n = 8). Ketoprofen is a highly potent and selective COX-1 inhibitor, celecoxib is a preferential COX-2 inhibitor, and aspirin is a selective COX-1 inhibitor with a distinct mechanism that irreversibly inhibits substrate binding. Because blood cells, including platelets and white blood cells, also contain COX-1, 11C-PS13 uptake inhibition from blood cells was measured in vitro and ex vivo (i.e., using blood obtained during PET scanning). Results: High 11C-PS13 uptake was observed in major organs with high COX-1 density, including the spleen, lungs, kidneys, and gastrointestinal tract. Ketoprofen (1-75 mg orally) blocked uptake in these organs far more effectively than did celecoxib (100-400 mg orally). On the basis of the plasma concentration to inhibit 50% of the maximum radioligand binding in the spleen (in vivo IC 50), ketoprofen (<0.24 µM) was more than 10-fold more potent than celecoxib (>2.5 µM) as a COX-1 inhibitor, consistent with the in vitro potencies of these drugs for inhibiting COX-1. Blockade of 11C-PS13 uptake from blood cells acquired during the PET scans mirrored that in organs of the body. Aspirin (972-1,950 mg orally) blocked such a small percentage of uptake that its in vivo IC 50 could not be determined. Conclusion: 11C-PS13 selectively binds to COX-1 in humans and can measure the in vivo potency of nonsteroidal antiinflammatory drugs that competitively inhibit arachidonic acid binding to COX-1. These in vivo studies, which reflect the net effect of drug absorption and metabolism in all organs of the body, demonstrated that ketoprofen had unexpectedly high potency, that celecoxib substantially inhibited COX-1, and that aspirin acetylation of COX-1 did not block binding of the representative nonsteroidal inhibitor 11C-PS13.


Assuntos
Cetoprofeno , Animais , Humanos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Celecoxib/farmacologia , Cetoprofeno/farmacologia , Ácido Araquidônico/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Aspirina/farmacologia , Tomografia por Emissão de Pósitrons
18.
EJNMMI Res ; 13(1): 97, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947880

RESUMO

BACKGROUND: The need for arterial blood data in quantitative PET research limits the wider usability of this imaging method in clinical research settings. Image-derived input function (IDIF) approaches have been proposed as a cost-effective and non-invasive alternative to gold-standard arterial sampling. However, this approach comes with its own limitations-partial volume effects and radiometabolite correction among the most important-and varying rates of success, and the use of IDIF for brain PET has been particularly troublesome. MAIN BODY: This paper summarizes the limitations of IDIF methods for quantitative PET imaging and discusses some of the advances that may make IDIF extraction more reliable. The introduction of automated pipelines (both commercial and open-source) for clinical PET scanners is discussed as a way to improve the reliability of IDIF approaches and their utility for quantitative purposes. Survey data gathered from the PET community are then presented to understand whether the field's opinion of the usefulness and validity of IDIF is improving. Finally, as the introduction of next-generation PET scanners with long axial fields of view, ultra-high sensitivity, and improved spatial and temporal resolution, has also brought IDIF methods back into the spotlight, a discussion of the possibilities offered by these state-of-the-art scanners-inclusion of large vessels, less partial volume in small vessels, better description of the full IDIF kinetics, whole-body modeling of radiometabolite production-is included, providing a pathway for future use of IDIF. CONCLUSION: Improvements in PET scanner technology and software for automated IDIF extraction may allow to solve some of the major limitations associated with IDIF, such as partial volume effects and poor temporal sampling, with the exciting potential for accurate estimation of single kinetic rates. Nevertheless, until individualized radiometabolite correction can be performed effectively, IDIF approaches remain confined at best to a few tracers.

19.
Neuroimage ; 63(3): 1532-41, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22906792

RESUMO

UNLABELLED: Quantitative PET studies of neuroreceptor tracers typically require that arterial input function be measured. The aim of this study was to explore the use of a population-based input function (PBIF) and an image-derived input function (IDIF) for [(11)C](R)-rolipram kinetic analysis, with the goal of reducing - and possibly eliminating - the number of arterial blood samples needed to measure parent radioligand concentrations. METHODS: A PBIF was first generated using [(11)C](R)-rolipram parent time-activity curves from 12 healthy volunteers (Group 1). Both invasive (blood samples) and non-invasive (body weight, body surface area, and lean body mass) scaling methods for PBIF were tested. The scaling method that gave the best estimate of the Logan-V(T) values was then used to determine the test-retest variability of PBIF in Group 1 and then prospectively applied to another population of 25 healthy subjects (Group 2), as well as to a population of 26 patients with major depressive disorder (Group 3). Results were also compared to those obtained with an image-derived input function (IDIF) from the internal carotid artery. In some subjects, we measured arteriovenous differences in [(11)C](R)-rolipram concentration to see whether venous samples could be used instead of arterial samples. Finally, we assessed the ability of IDIF and PBIF to discriminate depressed patients (MDD) and healthy subjects. RESULTS: Arterial blood-scaled PBIF gave better results than any non-invasive scaling technique. Excellent results were obtained when the blood-scaled PBIF was prospectively applied to the subjects in Group 2 (V(T) ratio 1.02±0.05; mean±SD) and Group 3 (V(T) ratio 1.03±0.04). Equally accurate results were obtained for two subpopulations of subjects drawn from Groups 2 and 3 who had very differently shaped (i.e. "flatter" or "steeper") input functions compared to PBIF (V(T) ratio 1.07±0.04 and 0.99±0.04, respectively). Results obtained via PBIF were equivalent to those obtained via IDIF (V(T) ratio 0.99±0.05 and 1.00±0.04 for healthy subjects and MDD patients, respectively). Retest variability of PBIF was equivalent to that obtained with full input function and IDIF (14.5%, 15.2%, and 14.1%, respectively). Due to [(11)C](R)-rolipram arteriovenous differences, venous samples could not be substituted for arterial samples. With both IDIF and PBIF, depressed patients had a 20% reduction in [(11)C](R)-rolipram binding as compared to control (two-way ANOVA: p=0.008 and 0.005, respectively). These results were almost equivalent to those obtained using 23 arterial samples. CONCLUSION: Although some arterial samples are still necessary, both PBIF and IDIF are accurate and precise alternatives to full arterial input function for [(11)C](R)-rolipram PET studies. Both techniques give accurate results with low variability, even for clinically different groups of subjects and those with very differently shaped input functions.


Assuntos
Transtorno Depressivo Maior/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Rolipram , Adulto , Antidepressivos/sangue , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/sangue , Transtorno Depressivo Maior/sangue , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Compostos Radiofarmacêuticos/sangue , Rolipram/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA