Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612436

RESUMO

Intratumoral immune cytolytic activity (CYT), calculated as the geometric mean of granzyme-A (GZMA) and perforin-1 (PRF1) expression, has emerged as a critical factor in cancer immunotherapy, with significant implications for patient prognosis and treatment outcomes. Immune checkpoint pathways, the composition of the tumor microenvironment (TME), antigen presentation, and metabolic pathways regulate CYT. Here, we describe the various methods with which we can assess CYT. The detection and analysis of tumor-infiltrating lymphocytes (TILs) using flow cytometry or immunohistochemistry provide important information about immune cell populations within the TME. Gene expression profiling and spatial analysis techniques, such as multiplex immunofluorescence and imaging mass cytometry allow the study of CYT in the context of the TME. We discuss the significant clinical implications that CYT has, as its increased levels are associated with positive clinical outcomes and a favorable prognosis. Moreover, CYT can be used as a prognostic biomarker and aid in patient stratification. Altering CYT through the different methods targeting it, offers promising paths for improving treatment responses. Overall, understanding and modulating CYT is critical for improving cancer immunotherapy. Research into CYT and the factors that influence it has the potential to transform cancer treatment and improve patient outcomes.


Assuntos
Apresentação de Antígeno , Imunoterapia , Humanos , Citotoxicidade Imunológica , Citometria de Fluxo , Perfilação da Expressão Gênica
3.
Int J Mol Sci ; 24(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37762474

RESUMO

In the rapidly evolving landscape of molecular genetics and genomics, this Special Issue brings together a collection of insightful review articles that delve into the forefront of scientific exploration [...].

4.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176128

RESUMO

The complexity of the cellular and non-cellular milieu surrounding human tumors plays a decisive role in the course and outcome of disease. The high variability in the distribution of the immune and non-immune compartments within the tumor microenvironments (TME) among different patients governs the mode of their response or resistance to current immunotherapeutic approaches. Through deciphering this diversity, one can tailor patients' management to meet an individual's needs. Single-cell (sc) omics technologies have given a great boost towards this direction. This review gathers recent data about how multi-omics profiling, including the utilization of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (scATAC-seq), T-cell receptor sequencing (scTCR-seq), mass, tissue-based, or microfluidics cytometry, and related bioinformatics tools, contributes to the high-throughput assessment of a large number of analytes at single-cell resolution. Unravelling the exact TCR clonotype of the infiltrating T cells or pinpointing the classical or novel immune checkpoints across various cell subsets of the TME provide a boost to our comprehension of adaptive immune responses, their antigen specificity and dynamics, and grant suggestions for possible therapeutic targets. Future steps are expected to merge high-dimensional data with tissue localization data, which can serve the investigation of novel multi-modal biomarkers for the selection and/or monitoring of the optimal treatment from the current anti-cancer immunotherapeutic armamentarium.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Cromatina , Análise de Célula Única/métodos , Microambiente Tumoral
5.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047552

RESUMO

There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and ß-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.


Assuntos
Neoplasias Renais , Transdução de Sinais , Humanos , Etoposídeo , Transdução de Sinais/genética , Hidroxiureia , Neoplasias Renais/genética , Proteínas de Transporte , Proteínas Serina-Treonina Quinases
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047684

RESUMO

Cancer is one of the leading causes of death in the world; therefore, extensive research has been dedicated to exploring potential therapeutics, including immune checkpoint inhibitors (ICIs). Initially, programmed-death ligand-1 was the biomarker utilized to predict the efficacy of ICIs. However, its heterogeneous expression in the tumor microenvironment, which is critical to cancer progression, promoted the exploration of the tumor mutation burden (TMB). Research in various cancers, such as melanoma and lung cancer, has shown an association between high TMB and response to ICIs, increasing its predictive value. However, the TMB has failed to predict ICI response in numerous other cancers. Therefore, future research is needed to analyze the variations between cancer types and establish TMB cutoffs in order to create a more standardized methodology for using the TMB clinically. In this review, we aim to explore current research on the efficacy of the TMB as a biomarker, discuss current approaches to overcoming immunoresistance to ICIs, and highlight new trends in the field such as liquid biopsies, next generation sequencing, chimeric antigen receptor T-cell therapy, and personalized tumor vaccines.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Mutação , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética
7.
PLoS Pathog ; 16(4): e1008468, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32298395

RESUMO

Octamer binding transcription factor-4 (Oct4), is highly expressed in stem cells and has indispensable roles in pluripotency and cellular reprogramming. In contrast to other factors used for cellular reprogramming, a role for Oct4 outside embryonic stem cells has been elusive and highly controversial. Emerging evidence implicates Oct4 in the carcinogenic process, but the mechanism through which Oct4 may be functioning in cancers is not fully appreciated. Here, we provide evidence that Oct4 is expressed in human cervical cancer and this expression correlates with the presence of the human papillomavirus (HPV) oncogenes E6 and E7. Surprisingly, the viral oncogenes can complement exogenously provided Oct4 in reprogramming assays, providing functional validation for their ability to activate Oct4 transcription in Mouse Embryonic Fibroblasts (MEFs). To interrogate potential roles of Oct4 in cervical cancers we knocked-down Oct4 in HPV(+) (HeLa & CaSki) and HPV(-) (C33A) cervical cancer cell lines and found that Oct4 knockdown attenuated clonogenesis, only in the HPV(+) cells. More unexpectedly, cell proliferation and migration, were differentially affected in HPV(+) and HPV(-) cell lines. We provide evidence that Oct4 interacts with HPV E7 specifically at the CR3 region of the E7 protein and that introduction of the HPV oncogenes in C33A cells and human immortalised keratinocytes generates Oct4-associated transcriptional and phenotypic patterns, which mimic those seen in HPV(+) cells. We propose that a physical interaction of Oct4 with E7 regulates its activity in HPV(+) cervical cancers in a manner not seen in other cancer types.


Assuntos
Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Células HeLa , Humanos , Fator 3 de Transcrição de Octâmero/biossíntese , Fator 3 de Transcrição de Octâmero/genética , Proteínas Oncogênicas Virais/metabolismo , Oncogenes/fisiologia , Papillomaviridae/genética , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Proteínas Repressoras/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
8.
Crit Rev Immunol ; 41(2): 45-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34348002

RESUMO

Melanoma is the most aggressive and deadliest form of skin cancer, and its prognosis is very poor. Although the early detection is responsive to many treatments, metastatic melanoma is refractory to most of them. In the United States, skin melanoma is the fifth most common type of cancer in men and the sixth in women. Current treatment modalities, depending on the cancer stage, consist primarily of surgical excision, chemotherapy, adjuvant therapy, targeted therapies, and immunotherapy. Despite the wide range of therapeutic options and the steadily increasing response rates, a large subset of the treated patients relapse and develop resistance to further treatments. One novel approach in preclinical and clinical trials in immunotherapy is the adaptation of natural killer (NK) cells against resistant cancer cells. NK cells can kill a variety of cancer cell types, as well as the cancer stem cells, while leaving normal cells intact. In skin melanoma, as in most cancers, NK cells in the tumor microenvironment (TME) are functionally impaired. Several factors underlie the defective cause of NK cells, one of which is the dysregulation of the activating receptor NKG2D. This is the dominant receptor in regulating the cytotoxic activity, cytokine production, and regulation of other receptors expressed on NK cells and other lymphocytes. The defective NK cells in cancer models were associated with tumor growth and metastasis. In this review, we discuss the role of NK cells and their phenotypic variants in skin melanoma. Using bioinformatics, we have further analyzed the expression of NKG2D, confirming its low transcript levels in patients with skin melanoma. Furthermore, we show that the CD133 subset of cancer stem cells expresses low levels of NKG2D. Based on these findings we discuss the potential therapeutic approaches that can be exploited to upregulate NKG2D in patients' NK cells and restore their anti-melanoma effects, resulting in tumor regression and prolonged survival.


Assuntos
Imunoterapia , Melanoma , Subfamília K de Receptores Semelhantes a Lectina de Células NK/fisiologia , Neoplasias Cutâneas , Humanos , Células Matadoras Naturais , Melanoma/terapia , Neoplasias Cutâneas/terapia , Microambiente Tumoral
9.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142846

RESUMO

Despite the significant progress made towards comprehending the deregulated signatures in lung cancer, these vary from study to study. We reanalyzed 25 studies from the Gene Expression Omnibus (GEO) to detect and annotate co-deregulated signatures in lung cancer and in single-gene or single-drug perturbation experiments. We aimed to decipher the networks that these co-deregulated genes (co-DEGs) form along with their upstream regulators. Differential expression and upstream regulators were computed using Characteristic Direction and Systems Biology tools, including GEO2Enrichr and X2K. Co-deregulated gene expression profiles were further validated across different molecular and immune subtypes in lung adenocarcinoma (TCGA-LUAD) and lung adenocarcinoma (TCGA-LUSC) datasets, as well as using immunohistochemistry data from the Human Protein Atlas, before being subjected to subsequent GO and KEGG enrichment analysis. The functional alterations of the co-upregulated genes in lung cancer were mostly related to immune response regulating the cell surface signaling pathway, in contrast to the co-downregulated genes, which were related to S-nitrosylation. Networks of hub proteins across the co-DEGs consisted of overlapping TFs (SOX2, MYC, KAT2A) and kinases (MAPK14, CSNK2A1 and CDKs). Furthermore, using Connectivity Map we highlighted putative repurposing drugs, including valproic acid, betonicine and astemizole. Similarly, we analyzed the co-DEG signatures in single-gene and single-drug perturbation experiments in lung cancer cell lines. In summary, we identified critical co-DEGs in lung cancer providing an innovative framework for their potential use in developing personalized therapeutic strategies.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteína Quinase 14 Ativada por Mitógeno , Adenocarcinoma de Pulmão/patologia , Astemizol , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fatores de Transcrição/genética , Ácido Valproico
10.
Cancer Immunol Immunother ; 70(11): 3137-3154, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33779796

RESUMO

BACKGROUND: Skin melanoma is a highly immunogenic cancer. The intratumoral immune cytolytic activity (CYT) reflects the ability of cytotoxic T and NK cells to eliminate cancer cells, and is associated with improved patient survival. Despite the enthusiastic clinical results seen in advanced-stage metastatic melanoma patients treated with immune checkpoint inhibitors, a subgroup of them will later relapse and develop acquired resistance. We questioned whether CYT associates with different genomic profiles and thus, patient outcome, in skin melanoma. METHODS: We explored the TCGA-SKCM dataset and stratified patients to distinct subgroups of cytolytic activity. The tumor immune contexture, somatic mutations and recurrent copy number aberrations were calculated using quanTIseq, MutSigCV and GISTIC2. Chromothriptic events were explored using CTLPScanner and cancer neoepitopes were predicted with antigen garnish. Each tumor's immunophenoscore was calculated using Immunophenogram. Mutational signatures and kataegis were explored using SigProfiler and compared to the known single or doublet base substitution signatures from COSMIC. RESULTS: Metastatic skin melanomas had significantly higher CYT levels compared to primary tumors. We assessed enrichment for immune-related gene sets within CYT-high tumors, whereas, CYT-low tumors were enriched for non-immune related gene sets. In addition, distinct mutational and neoantigen loads, primarily composed of C > T transitions, along with specific types of copy number aberrations, characterized each cytolytic subgroup. We found a broader pattern of chromothripsis across CYT-low tumors, where chromosomal regions harboring chromothriptic events, contained a higher number of cancer genes. SBS7a/b, SBS5 and SBS1 were the most prevalent mutational signatures across both cytolytic subgroups, but SBS1 differed significantly between them. SBS7a/b was mutually exclusive with SBS5 and SBS1 in both CYT subgroups. CYT-high patients had markedly higher immunophenoscore, suggesting that they should display a clinical benefit upon treatment with immune checkpoint inhibition therapy, compared to CYT-low patients. CONCLUSIONS: Overall, our data highlight the existence of distinct genomic features across cytolytic subgroups in skin melanoma, which might affect the patients' relapse rate or their acquisition of resistance to immune checkpoint inhibition therapies.


Assuntos
Citotoxicidade Imunológica/imunologia , Melanoma/genética , Melanoma/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Granzimas/imunologia , Humanos , Células Matadoras Naturais/imunologia , Mutação , Perforina/imunologia , Linfócitos T Citotóxicos/imunologia , Melanoma Maligno Cutâneo
11.
Adv Exp Med Biol ; 1338: 55-66, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34973010

RESUMO

Acute lymphoblastic leukemia is the most common childhood malignancy. Rhabdomyosarcoma, on the other hand, is a rare type of malignancy which belongs to the primitive neuroectodermal family of tumors. The aim of the present study was to use computational methods in order to examine the similarities and differences of the two different tumors using two cell lines as a model, the T-cell acute lymphoblastic leukemia CCRF-CEM and rhabdomyosarcoma TE-671, and, in particular, similarities of the metabolic pathways utilized by two different cell types in vitro. Both cell lines were studied using microarray technology. Differential expression profile has revealed genes with similar expression, suggesting that there are common mechanisms between the two cell types, where some of these mechanisms are preserved from their ancestor embryonic cells. Expression of identified species was modeled using known functions, in order to find common patterns in metabolism-related mechanisms. Species expression manifested very interesting dynamics, and we were able to model the system with elliptical/helical functions. We discuss the results of our analysis in the context of the commonly occurring genes between the two cell lines and the respective participating pathways as far as extracellular signaling and cell cycle regulation/proliferation are concerned. In the present study, we have developed a methodology, which was able to unravel some of the underlying dynamics of the metabolism-related species of two different cell types. Such approaches could prove useful in understanding the mechanisms of tumor ontogenesis, progression, and proliferation.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Rabdomiossarcoma , Linhagem Celular Tumoral , Criança , Humanos , Metabolômica , Rabdomiossarcoma/genética
12.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445114

RESUMO

The strong decoration of tRNAs with post-transcriptional modifications provides an unprecedented adaptability of this class of non-coding RNAs leading to the regulation of bacterial growth and pathogenicity. Accumulating data indicate that tRNA post-transcriptional modifications possess a central role in both the formation of bacterial cell wall and the modulation of transcription and translation fidelity, but also in the expression of virulence factors. Evolutionary conserved modifications in tRNA nucleosides ensure the proper folding and stability redounding to a totally functional molecule. However, environmental factors including stress conditions can cause various alterations in tRNA modifications, disturbing the pathogen homeostasis. Post-transcriptional modifications adjacent to the anticodon stem-loop, for instance, have been tightly linked to bacterial infectivity. Currently, advances in high throughput methodologies have facilitated the identification and functional investigation of such tRNA modifications offering a broader pool of putative alternative molecular targets and therapeutic avenues against bacterial infections. Herein, we focus on tRNA epitranscriptome shaping regarding modifications with a key role in bacterial infectivity including opportunistic pathogens of the human microbiome.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Transcriptoma/genética , Anticódon/genética , Humanos , Nucleosídeos/genética , Biossíntese de Proteínas/genética , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , Virulência/genética
13.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072627

RESUMO

BACKGROUND: Glucocorticoids play an essential part in anti-leukemic therapies, but resistance is a crucial event for the prognosis of the disease. Glucocorticoids influence the metabolic properties of leukemic cells. The inherent plasticity of clinically evolving cancer cells justifies the characterization of drug-induced early oncogenic pathways, which represent a likely source of detrimental secondary effects. AIM: The present work aims to investigate the effect of glucocorticoids in metabolic pathways in the CCRF-CEM leukemic cells. Metabolic factors and gene expression profiles were examined in order to unravel the possible mechanisms of the CCRF-CEM leukemic cell growth dynamics. METHODS: CCRF-CEM cells were used as a model. Cells were treated with prednisolone with concentrations 0-700 µM. Cell culture supernatants were used for glucose, lactic acid, LDH, Na+, K+ and Ca++ measurements. Cytotoxicity was determined with flow cytometry. Microarray analysis was performed using two different chips of 1.2 k and 4.8 k genes. Gene Ontology enrichment analysis was applied to find metabolism- and GC-related genes. RESULTS: Higher prednisolone concentrations inhibited glucose uptake, without exhibiting any cytotoxic effects. Glucose consumption did not correlate with the total cell population, or the viable population, indicating that growth is not directly proportional to glucose consumption. Neither of the subpopulations, i.e., viable, necrotic, or apoptotic cells, contributed to this. CONCLUSIONS: Different types of leukemic cells seem to exhibit different patterns of glucose metabolism. Both resistant and sensitive CCRF-CEM cells followed the aerobic pathway of glycolysis. There is probably a rapid change in membrane permeability, causing a general shutdown towards everything that is outside the cell. This could in part also explain the observed resistance. Glucocorticoids do not enter the cell passively anymore and therefore no effects are observed. Based on our observations, ion concentrations are measurable factors both in vitro and in vivo, which makes them possible markers of glucocorticoid cytotoxic action.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Leucemia/genética , Leucemia/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Glucocorticoides/uso terapêutico , Glicólise , Humanos , Leucemia/tratamento farmacológico , Leucemia/patologia , Prednisolona/farmacologia , Transcriptoma , Células Tumorais Cultivadas
14.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066886

RESUMO

Gravity constituted the only constant environmental parameter, during the evolutionary period of living matter on Earth. However, whether gravity has affected the evolution of species, and its impact is still ongoing. The topic has not been investigated in depth, as this would require frequent and long-term experimentations in space or an environment of altered gravity. In addition, each organism should be studied throughout numerous generations to determine the profound biological changes in evolution. Here, we review the significant abnormalities presented in the cardiovascular, immune, vestibular and musculoskeletal systems, due to altered gravity conditions. We also review the impact that gravity played in the anatomy of snakes and amphibians, during their evolution. Overall, it appears that gravity does not only curve the space-time continuum but the biological continuum, as well.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Cardiovasculares , Hipergravidade , Sistema Imunitário/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Glândula Tireoide/fisiologia , Vestíbulo do Labirinto/fisiologia , Ausência de Peso , Animais , Humanos , Voo Espacial
15.
Mol Cell Biochem ; 471(1-2): 143-153, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32506247

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor and it is associated with poor survival. Integrin-linked kinase (ILK) is a serine/threonine protein pseudo-kinase that binds to the cytoplasmic domains of ß1 and ß3 integrins and has been previously shown to promote invasion and metastasis in many cancer types, including GBM. However, little is known regarding the exact molecular mechanism implicating ILK in GBM aggressiveness. In this study, we used two brain cell lines, the non-invasive neuroglioma H4 cells, and the highly invasive glioblastoma A172 cells, which express ILK in much higher levels than H4. We studied the effect of ILK silencing on the metastatic behavior of glioblastoma cells in vitro and elucidate the underlying molecular mechanism. We showed that siRNA-mediated silencing of ILK inhibits cell migration and invasion of the highly invasive A172 cells while it does not affect the migratory and invasive capacity of H4 cells. These data were also supported by respective changes in the expression of Rho-associated kinase 1 (ROCK1), fascin actin-bundling protein 1 (FSCN1), and matrix metalloproteinase 13 (MMP13), which are known to regulate cell migration and invasion. Our findings were further corroborated by analyzing the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. We conclude that ILK promotes glioblastoma cell invasion through activation of ROCK1 and FSCN1 in vitro, providing a more exact molecular mechanism for its action.


Assuntos
Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Movimento Celular , Glioblastoma/patologia , Proteínas dos Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Quinases Associadas a rho/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
16.
Crit Rev Immunol ; 39(5): 379-408, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32422018

RESUMO

Background-The development of immune checkpoint blockers, primarily comprising the anti-PD-1/an-ti-PD-L1 and anti-CTLA-4 monoclonal antibodies, has formed the therapeutic landscape of quite a few different cancer types. In spite of the great clinical results produced by some inhibitors in some cases, most cancer patients still present de novo or adaptive resistance, and thus, the overall efficacy of this type of immunotherapy is not sufficient. Here, we explore emerging immune checkpoint molecules apart from anti-PD-1/anti-PD-L1 and anti-CTLA-4, presently being used in the clinical setting as mono- or combinatorial therapy against various cancer types. Methods-Primary publications with results between January 2014 and December 2019 were investigated on PubMed. ClinicalTrials.gov was screened for finding phase I/II/III cancer trials on the use of new immune checkpoint targets, including LAG-3, TIM-3, TIGIT, and VISTA, which are active (recruiting or not) or completed. Results-We recapitulate the clinical data associated with these immune checkpoint inhibitors and analyze their application prospects. The investigation about such emerging molecules has produced encouraging outcomes in preclinical studies and/or clinical trials. Conclusions-Although monotherapy treatment has yielded impressive results in some cases, the current attempts emphasize more the design of combinatorial immune checkpoint inhibition that targets non-redundant pathways to achieve a synergistic effect against cancer cells. It seems that such new combinatorial checkpoint inhibition schemes will achieve better outcomes for the patients than the ones witnessed with CTLA-4 or PD-1/PD-L1 blockers.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Ensaios Clínicos como Assunto , Receptores Coestimuladores e Inibidores de Linfócitos T/antagonistas & inibidores , Humanos , Imunoterapia/tendências , Neoplasias/imunologia
17.
Int J Mol Sci ; 21(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076450

RESUMO

The growth arrest-specific transcript 5 (GAS5) is a >200-nt lncRNA molecule that regulates several cellular functions, including proliferation, apoptosis, invasion and metastasis, across different types of human cancers. Here, we reviewed the current literature on the expression of GAS5 in leukemia, cervical, breast, ovarian, prostate, urinary bladder, lung, gastric, colorectal, liver, osteosarcoma and brain cancers, as well as its interaction with various miRNAs and its effect on therapy-related resistance in these malignancies. The general consensus is that GAS5 acts as a tumor suppressor across different tumor types and that its up-regulation results in tumor sensitization to chemotherapy or radiotherapy. GAS5 seems to play a previously unappreciated, but significant role in tumor therapy-induced resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias/genética , RNA Longo não Codificante/genética , Animais , Genes Supressores de Tumor , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , RNA Longo não Codificante/metabolismo
18.
J Transl Med ; 17(1): 319, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547885

RESUMO

Post-transcriptional modifications have been recently expanded with the addition of RNA editing, which is predominantly mediated by adenosine and cytidine deaminases acting on DNA and RNA. Here, we review the full spectrum of physiological processes in which these modifiers are implicated, among different organisms. Adenosine to inosine (A-to-I) editors, members of the ADAR and ADAT protein families are important regulators of alternative splicing and transcriptional control. On the other hand, cytidine to uridine (C-to-U) editors, members of the AID/APOBEC family, are heavily implicated in innate and adaptive immunity with important roles in antibody diversification and antiviral response. Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they modify various RNA molecules, including miRNAs, tRNAs apart from mRNAs, whereas DNA editing is also possible by some of them. The expansion of next generation sequencing technologies provided a wealth of data regarding such modifications. RNA editing has been implicated in various disorders including cancer, and neurological diseases of the brain or the central nervous system. It is also related to cancer heterogeneity and the onset of carcinogenesis. Response to treatment can also be affected by the RNA editing status where drug efficacy is significantly compromised. Studying RNA editing events can pave the way to the identification of new disease biomarkers, and provide a more personalised therapy to various diseases.


Assuntos
Saúde , Edição de RNA/genética , Transcriptoma/genética , Animais , Citidina Desaminase/metabolismo , Doença/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
19.
Proc Natl Acad Sci U S A ; 112(7): 2157-62, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646469

RESUMO

Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have studied the role of BRCA1 in the repair of DSBs in switch (S) regions during immunoglobulin class switch recombination, a physiological, deletion/recombination process that relies on the classical NHEJ machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism underlying BRCA1's function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis.


Assuntos
Linfócitos B/metabolismo , Proteína BRCA1/genética , Reparo do DNA , Switching de Imunoglobulina , Recombinação Genética , Humanos
20.
Clin Immunol ; 176: 71-76, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28093361

RESUMO

We report the first patient with an interstitial deletion of chromosome 15q24.1-q24.3 associated with common variable immunodeficiency (CVID). The 18-year old female patient's clinical and immunological phenotype was compared with 8 additional previously published patients with chr15q24 deletions. A CGH analysis estimated the deletion to be 3.767Mb in size (chr15: 74,410,916-78,178,418) and the result was confirmed using qRT-PCR. We defined an immune-related commonly deleted region (ICDR) within the chromosomal band 15q24.2, deleted in all four patients with different forms of antibody deficiencies. Mutations in the 14 genes within this ICDR were not identified in the remaining allele in our patient by WES and gene expression analyses showed haploinsufficiency of all the genes. Among these genes, we consider Nei Like DNA Glycosylase 1 (NEIL1) as a likely candidate gene due to its crucial role in B-cell activation and terminal differentiation.


Assuntos
Transtornos Cromossômicos/genética , Imunodeficiência de Variável Comum/genética , DNA Glicosilases/genética , Deficiência Intelectual/genética , Adolescente , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Feminino , Humanos , Ativação Linfocitária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA