Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(15): 2653-2672.e15, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506698

RESUMO

Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Humanos , Sítios de Splice de RNA/genética , Íntrons/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
2.
Cell ; 152(3): 453-66, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374342

RESUMO

There are ~650,000 Alu elements in transcribed regions of the human genome. These elements contain cryptic splice sites, so they are in constant danger of aberrant incorporation into mature transcripts. Despite posing a major threat to transcriptome integrity, little is known about the molecular mechanisms preventing their inclusion. Here, we present a mechanism for protecting the human transcriptome from the aberrant exonization of transposable elements. Quantitative iCLIP data show that the RNA-binding protein hnRNP C competes with the splicing factor U2AF65 at many genuine and cryptic splice sites. Loss of hnRNP C leads to formation of previously suppressed Alu exons, which severely disrupt transcript function. Minigene experiments explain disease-associated mutations in Alu elements that hamper hnRNP C binding. Thus, by preventing U2AF65 binding to Alu elements, hnRNP C plays a critical role as a genome-wide sentinel protecting the transcriptome. The findings have important implications for human evolution and disease.


Assuntos
Elementos Alu , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Transcriptoma , Evolução Molecular , Éxons , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Sítios de Splice de RNA , Análise de Sequência de RNA , Fator de Processamento U2AF
3.
Nat Immunol ; 16(4): 415-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706746

RESUMO

Post-transcriptional regulation of mRNA by the RNA-binding protein HuR (encoded by Elavl1) is required in B cells for the germinal center reaction and for the production of class-switched antibodies in response to thymus-independent antigens. Transcriptome-wide examination of RNA isoforms and their abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interactions, revealed that HuR-dependent splicing of mRNA affected hundreds of transcripts, including that encoding dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase (α-KGDH) complex. In the absence of HuR, defective mitochondrial metabolism resulted in large amounts of reactive oxygen species and B cell death. Our study shows how post-transcriptional processes control the balance of energy metabolism required for the proliferation and differentiation of B cells.


Assuntos
Linfócitos B/imunologia , Proteínas ELAV/imunologia , Centro Germinativo/imunologia , Imunidade Humoral , Imunoglobulinas/biossíntese , RNA Mensageiro/imunologia , Aciltransferases/genética , Aciltransferases/imunologia , Processamento Alternativo/imunologia , Animais , Antígenos/administração & dosagem , Antígenos/imunologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Morte Celular , Diferenciação Celular , Proliferação de Células , Proteínas ELAV/genética , Eritrócitos/imunologia , Centro Germinativo/citologia , Centro Germinativo/efeitos dos fármacos , Imunização , Switching de Imunoglobulina , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/imunologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Ovinos
4.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783381

RESUMO

MicroRNAs (miRNAs) are critical post-transcriptional regulators in many biological processes. They act by guiding RNA-induced silencing complexes to miRNA response elements (MREs) in target mRNAs, inducing translational inhibition and/or mRNA degradation. Functional MREs are expected to predominantly occur in the 3' untranslated region and involve perfect base-pairing of the miRNA seed. Here, we generate a high-resolution map of miR-181a/b-1 (miR-181) MREs to define the targeting rules of miR-181 in developing murine T cells. By combining a multi-omics approach with computational high-resolution analyses, we uncover novel miR-181 targets and demonstrate that miR-181 acts predominantly through RNA destabilization. Importantly, we discover an alternative seed match and identify a distinct set of targets with repeat elements in the coding sequence which are targeted by miR-181 and mediate translational inhibition. In conclusion, deep profiling of MREs in primary cells is critical to expand physiologically relevant targetomes and establish context-dependent miRNA targeting rules.

5.
Proc Natl Acad Sci U S A ; 120(34): e2301731120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590419

RESUMO

Fungal pathogens depend on sophisticated gene expression programs for successful infection. A crucial component is RNA regulation mediated by RNA-binding proteins (RBPs). However, little is known about the spatiotemporal RNA control mechanisms during fungal pathogenicity. Here, we discover that the RBP Khd4 defines a distinct mRNA regulon to orchestrate membrane trafficking during pathogenic development of Ustilago maydis. By establishing hyperTRIBE for fungal RBPs, we generated a comprehensive transcriptome-wide map of Khd4 interactions in vivo. We identify a defined set of target mRNAs enriched for regulatory proteins involved, e.g., in GTPase signaling. Khd4 controls the stability of target mRNAs via its cognate regulatory element AUACCC present in their 3' untranslated regions. Studying individual examples reveals a unique link between Khd4 and vacuole maturation. Thus, we uncover a distinct role for an RNA stability factor defining a specific mRNA regulon for membrane trafficking during pathogenicity.


Assuntos
Estabilidade de RNA , Regulon , RNA Mensageiro/genética , Regulon/genética , Regiões 3' não Traduzidas/genética
6.
J Biol Chem ; 300(7): 107457, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38866324

RESUMO

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.

7.
Plant J ; 118(1): 203-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124335

RESUMO

The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina/metabolismo , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
8.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37139545

RESUMO

The expanding field of epitranscriptomics might rival the epigenome in the diversity of biological processes impacted. In recent years, the development of new high-throughput experimental and computational techniques has been a key driving force in discovering the properties of RNA modifications. Machine learning applications, such as for classification, clustering or de novo identification, have been critical in these advances. Nonetheless, various challenges remain before the full potential of machine learning for epitranscriptomics can be leveraged. In this review, we provide a comprehensive survey of machine learning methods to detect RNA modifications using diverse input data sources. We describe strategies to train and test machine learning methods and to encode and interpret features that are relevant for epitranscriptomics. Finally, we identify some of the current challenges and open questions about RNA modification analysis, including the ambiguity in predicting RNA modifications in transcript isoforms or in single nucleotides, or the lack of complete ground truth sets to test RNA modifications. We believe this review will inspire and benefit the rapidly developing field of epitranscriptomics in addressing the current limitations through the effective use of machine learning.


Assuntos
Aprendizado de Máquina , Transcriptoma , RNA Mensageiro , RNA/genética
9.
Nucleic Acids Res ; 51(2): 831-851, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36583366

RESUMO

RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process.


Assuntos
Proteínas de Saccharomyces cerevisiae , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
10.
Nucleic Acids Res ; 51(2): 870-890, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36620874

RESUMO

Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.


Assuntos
Hipóxia Celular , Salpicos Nucleares , Splicing de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Processamento Alternativo , Éxons/genética , Fosfoproteínas/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Células HeLa
11.
Nucleic Acids Res ; 51(3): 1297-1316, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36651277

RESUMO

The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.


Assuntos
Proteínas de Ligação a RNA , Fatores de Transcrição , Humanos , Proteínas de Ligação a DNA/genética , Epilepsia , Corpos de Processamento , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
12.
Biol Chem ; 405(4): 229-239, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37942876

RESUMO

HnRNPs are ubiquitously expressed RNA-binding proteins, tightly controlling posttranscriptional gene regulation. Consequently, hnRNP networks are essential for cellular homeostasis and their dysregulation is associated with cancer and other diseases. However, the physiological function of hnRNPs in non-cancerous cell systems are poorly understood. We analyzed the importance of HNRNPDL in endothelial cell functions. Knockdown of HNRNPDL led to impaired proliferation, migration and sprouting of spheroids. Transcriptome analysis identified cyclin D1 (CCND1) and tropomyosin 4 (TPM4) as targets of HNRNPDL, reflecting the phenotypic changes after knockdown. Our findings underline the importance of HNRNPDL for the homeostasis of physiological processes in endothelial cells.


Assuntos
Células Endoteliais , Ribonucleoproteínas Nucleares Heterogêneas , Ribonucleoproteínas Nucleares Heterogêneas/genética , Células Endoteliais/metabolismo , Proteínas de Ligação a RNA/metabolismo
13.
Genes Dev ; 30(5): 553-66, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944680

RESUMO

Nuclear export factor 1 (NXF1) exports mRNA to the cytoplasm after recruitment to mRNA by specific adaptor proteins. How and why cells use numerous different export adaptors is poorly understood. Here we critically evaluate members of the SR protein family (SRSF1-7) for their potential to act as NXF1 adaptors that couple pre-mRNA processing to mRNA export. Consistent with this proposal, >1000 endogenous mRNAs required individual SR proteins for nuclear export in vivo. To address the mechanism, transcriptome-wide RNA-binding profiles of NXF1 and SRSF1-7 were determined in parallel by individual-nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP). Quantitative comparisons of RNA-binding sites showed that NXF1 and SR proteins bind mRNA targets at adjacent sites, indicative of cobinding. SRSF3 emerged as the most potent NXF1 adaptor, conferring sequence specificity to RNA binding by NXF1 in last exons. Interestingly, SRSF3 and SRSF7 were shown to bind different sites in last exons and regulate 3' untranslated region length in an opposing manner. Both SRSF3 and SRSF7 promoted NXF1 recruitment to mRNA. Thus, SRSF3 and SRSF7 couple alternative splicing and polyadenylation to NXF1-mediated mRNA export, thereby controlling the cytoplasmic abundance of transcripts with alternative 3' ends.


Assuntos
Processamento Alternativo/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Transporte Ativo do Núcleo Celular/genética , Animais , Linhagem Celular , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina
14.
Nucleic Acids Res ; 49(16): e92, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34157120

RESUMO

N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification.


Assuntos
Adenosina/análogos & derivados , Aprendizado de Máquina , Processamento Pós-Transcricional do RNA , RNA-Seq/métodos , Adenosina/química , Adenosina/metabolismo , Animais , Células HEK293 , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Motivos de Nucleotídeos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq/normas , Sensibilidade e Especificidade
15.
Proc Natl Acad Sci U S A ; 117(13): 7140-7149, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32188783

RESUMO

The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.


Assuntos
RNA/metabolismo , Fator de Processamento U2AF/metabolismo , Animais , Bovinos , Imunoprecipitação da Cromatina/métodos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Motivo de Reconhecimento de RNA , Ribonucleosídeo Difosfato Redutase/metabolismo
16.
PLoS Genet ; 16(1): e1008581, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31978041

RESUMO

Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3' UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3' UTR.


Assuntos
Padronização Corporal , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ovário/metabolismo , Ligação Proteica
17.
Genes Dev ; 29(5): 501-12, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25737280

RESUMO

Cellular morphology is an essential determinant of cellular function in all kingdoms of life, yet little is known about how cell shape is controlled. Here we describe a molecular program that controls the early morphology of neurons through a metazoan-specific zinc finger protein, Unkempt. Depletion of Unkempt in mouse embryos disrupts the shape of migrating neurons, while ectopic expression confers neuronal-like morphology to cells of different nonneuronal lineages. We found that Unkempt is a sequence-specific RNA-binding protein and identified its precise binding sites within coding regions of mRNAs linked to protein metabolism and trafficking. RNA binding is required for Unkempt-induced remodeling of cellular shape and is directly coupled to a reduced production of the encoded proteins. These findings link post-transcriptional regulation of gene expression with cellular shape and have general implications for the development and disease of multicellular organisms.


Assuntos
Forma Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/citologia , Animais , Encéfalo/metabolismo , Linhagem Celular , Embrião de Mamíferos , Perfilação da Expressão Gênica , Células HeLa , Humanos , Camundongos , Ligação Proteica , RNA Mensageiro
18.
RNA ; 26(5): 648-663, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32127384

RESUMO

Hypoxia is a hallmark of solid cancers, supporting proliferation, angiogenesis, and escape from apoptosis. There is still limited understanding of how cancer cells adapt to hypoxic conditions and survive. We analyzed transcriptome changes of human lung and breast cancer cells under chronic hypoxia. Hypoxia induced highly concordant changes in transcript abundance, but divergent splicing responses, underlining the cell type-specificity of alternative splicing programs. While RNA-binding proteins were predominantly reduced, hypoxia specifically induced muscleblind-like protein 2 (MBNL2). Strikingly, MBNL2 induction was critical for hypoxia adaptation by controlling the transcript abundance of hypoxia response genes, such as vascular endothelial growth factor A (VEGFA) MBNL2 depletion reduced the proliferation and migration of cancer cells, demonstrating an important role of MBNL2 as cancer driver. Hypoxia control is specific for MBNL2 and not shared by its paralog MBNL1. Thus, our study revealed MBNL2 as central mediator of cancer cell responses to hypoxia, regulating the expression and alternative splicing of hypoxia-induced genes.


Assuntos
Neoplasias da Mama/genética , Neoplasias Pulmonares/genética , Proteínas de Ligação a RNA/genética , Hipóxia Tumoral/genética , Fator A de Crescimento do Endotélio Vascular/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transcriptoma/genética
19.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628634

RESUMO

Previous studies towards reduced oxygen availability have mostly focused on changes in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events. Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced mRNA stability not only added to a compensatory attenuation of immune responses, but also, most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial functions. These changes may prevent the futile production of new mitochondria under conditions where mitochondria cannot exert their full metabolic function and are indeed actively removed by mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability regulation controls mitochondrial functions in the context of hypoxia.


Assuntos
Regulação da Expressão Gênica , Hipóxia , Aclimatação , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
20.
Genome Res ; 28(5): 699-713, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29643205

RESUMO

Alternative splicing generates distinct mRNA isoforms and is crucial for proteome diversity in eukaryotes. The RNA-binding protein (RBP) U2AF2 is central to splicing decisions, as it recognizes 3' splice sites and recruits the spliceosome. We establish "in vitro iCLIP" experiments, in which recombinant RBPs are incubated with long transcripts, to study how U2AF2 recognizes RNA sequences and how this is modulated by trans-acting RBPs. We measure U2AF2 affinities at hundreds of binding sites and compare in vitro and in vivo binding landscapes by mathematical modeling. We find that trans-acting RBPs extensively regulate U2AF2 binding in vivo, including enhanced recruitment to 3' splice sites and clearance of introns. Using machine learning, we identify and experimentally validate novel trans-acting RBPs (including FUBP1, CELF6, and PCBP1) that modulate U2AF2 binding and affect splicing outcomes. Our study offers a blueprint for the high-throughput characterization of in vitro mRNP assembly and in vivo splicing regulation.


Assuntos
Sítios de Splice de RNA/genética , Splicing de RNA , Spliceossomos/genética , Fator de Processamento U2AF/genética , Sítios de Ligação/genética , Células HeLa , Humanos , Íntrons/genética , Modelos Genéticos , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA