Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 61(19): 5559-5566, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255782

RESUMO

As the COVID-19 pandemic was overtaking the world in the spring of 2020, the National Institute of Standards and Technology (NIST) began collaborating with the National Biodefense Analysis and Countermeasures Center to study the inactivation of SARS-CoV-2 after exposure to different ultraviolet (UV) and blue light wavelengths. This paper describes a 1 kHz pulsed laser and projection system used to study the doses required to inactive SARS-CoV-2 over the wavelength range of 222 to 488 nm. This paper builds on NIST's previous work for water pathogen inactivation using UV laser irradiation. The design of the laser and projection system and its performance in a Biosafety Level 3 (BSL-3) laboratory are given. The SARS-CoV-2 inactivation results (published elsewhere by Schuit, M.A., et al., expected 2022) demonstrate that a tunable laser projection system is an invaluable tool for this research.


Assuntos
COVID-19 , Desinfecção , Humanos , Desinfecção/métodos , SARS-CoV-2 , Pandemias , Raios Ultravioleta , Lasers , Água
2.
Appl Opt ; 60(28): 8774-8786, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613103

RESUMO

The National Institute of Standards and Technology (NIST) Robotic Optical Scattering Instrument (ROSI) serves as the national reference instrument for specular and diffuse bidirectional reflectance measurements in the ultraviolet to short-wave infrared wavelength regions. This paper gives a comprehensive overview of the design, operation, and capabilities of ROSI. We describe measurement methods for diffuse and specular reflectance, identify and quantify the elements of the uncertainty budget, and validate the reflectance scale through comparison with NIST's previous reference instrument, the Spectral Tri-function Automated Reference Reflectometer. Examples of the range of ROSI's capabilities, including the limits for low-reflectance measurements and a research application using out-of-plane measurements of bidirectional reflectance for remote sensing reference reflectors, are also covered.

3.
J Res Natl Inst Stand Technol ; 126: 126058, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-39359738

RESUMO

Data for interpreting virus inactivation on N95 face filtering respirators (FFRs) by ultraviolet (UV) radiation are important in developing UV strategies for N95 FFR disinfection and reuse for any situation, whether it be everyday practices, contingency planning for expected shortages, or crisis planning for known shortages. Data regarding the integrity, form, fit, and function of N95 FFR materials following UV radiation exposure are equally important. This article provides these data for N95 FFRs following UV-C irradiation (200 nm to 280 nm) in a commercial UV-C enclosure. Viral inactivation was determined by examining the inactivation of OC43, a betacoronavirus, inoculated on N95 FFRs. Different metrological approaches were used to examine irradiated N95 FFRs to determine if there were any discernible physical differences between non-irradiated N95 FFRs and those irradiated using the UV-C enclosure. Material integrity was examined using high-resolution scanning electron microscopy. Form, fit, and function were examined using flow resistance, tensile strength, and particle filtration measurements. A separate examination of filter efficiency, fit, and strap tensile stress measurements was performed by the National Personal Protective Technology Laboratory. Data from these metrological examinations provide evidence that N95 FFR disinfection and reuse using the UV-C enclosure can be effective.

4.
Appl Opt ; 55(23): 6346-54, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27534478

RESUMO

We have accurately determined the absorptance of three pyrheliometer cavities at 532 nm by measuring the residual reflectance using an angle-resolved bidirectional reflectometer. Measurements were performed at a normal incidence as a function of the viewing angle and position on the cavity cone. By numerically integrating the measured angle-resolved scatter over both the direction and position and accounting for an obstructed view of the cavity, we determined that the effective cavity reflectance was between 8×10-4 and 9×10-4. Thus, the absorptance of the three cavities ranged from 0.99909±0.00014 to 0.99922±0.00012 (k=2 combined expanded uncertainties). These measurements, when extended over the spectral range of operation of the pyrheliometer, are required to establish SI traceability for absolute solar irradiance measurements.

5.
Addit Manuf ; 622023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36733692

RESUMO

Vat photopolymerization (VP) is a rapidly growing category of additive manufacturing. As VP methods mature the expectation is that the quality of printed parts will be highly reproducible. At present, detailed characterization of the light engines used in liquid crystal display (LCD)-based VP systems is lacking and so it is unclear if they are built to sufficiently tight tolerances to meet the current and/or future needs of additive manufacturing. Herein, we map the irradiance, spectral characteristics, and optical divergence of a nominally 405 nm LCD-based VP light engine. We find that there is notable variation in all of these properties as a function of position on the light engine that cause changes in extent of polymerization and surface texture. We further demonstrate through a derived photon absorption figure of merit and through printed test parts that the spatial heterogeneity observed in the light engine is significant enough to affect part fidelity. These findings help to explain several possible causes of variable part quality and also highlight the need for improved optical performance on LCD-based VP printers.

6.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779426

RESUMO

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Assuntos
COVID-19 , SARS-CoV-2 , Desinfecção/métodos , Humanos , Luz , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação
7.
OSA Contin ; 3(8): 2022-2035, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33283176

RESUMO

Additive manufacturing methods based on photopolymerization offer a promising potential for fabrication of high quality, highly transparent optical components. One use of these technologies involves fabrication of parts for very specific and narrow applications. In this work, we first performed optical raytracing simulations to model an optimized freeform nonimaging concentrator for a custom-built 12-LED array and then fabricated several waveguide concentrators using 3D printing and characterized their optical characteristics. Our results demonstrate that realizing an irradiance of 17 kW/m2 or more with an irradiance nonuniformity of better than 2 % over an area approaching 1 cm2 is realistic and that such an approach can rival intensities achieved with powerful lasers over a similar area. We also discuss an application where eight different types of LEDs were coupled into the waveguides to construct a solar simulator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA