Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Earths Future ; 7(3): 283-299, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31218239

RESUMO

Regional emissions of methane and their attribution to a variety of sources presently have large uncertainties. Measurements of radiocarbon (14C) in methane (CH4) may provide a method for identifying regional CH4 emissions from fossil versus biogenic sources because adding 14C-free fossil carbon reduces the 14C/C ratio (Δ14CH4) in atmospheric CH4 much more than biogenic carbon does. We describe an approach for estimating fossil and biogenic CH4 at regional scales using atmospheric Δ14CH4 observations. As a case study to demonstrate expected Δ14CH4 and Δ14CH4-CH4 relationships, we simulate and compare Δ14CH4 at a network of sites in California using two gridded CH4 emissions estimates (Emissions Database for Global Atmospheric Research, EDGAR, and Gridded Environmental Protection Agency, GEPA) and the CarbonTracker-Lagrange model for 2014, and for 2030 under business-as-usual and mitigation scenarios. The fossil fraction of CH4 (F) is closely linked with the simulated Δ14CH4-CH4 slope and differences of 2-21% in median F are found for EDGAR versus GEPA in 2014, and 7-10% for business-as-usual and mitigation scenarios in 2030. Differences of 10% in F for >200 ppb of added CH4 produce differences of >10‰ in Δ14CH4, which are likely detectable from regular observations. Nuclear power plant 14CH4 emissions generally have small simulated median influences on Δ14CH4 (0-7‰), but under certain atmospheric conditions they can be much stronger (>30‰) suggesting they must be considered in applications of Δ14CH4 in California. This study suggests that atmospheric Δ14CH4 measurements could provide powerful constraints on regional CH4 emissions, complementary to other monitoring techniques.

2.
Sci Rep ; 7(1): 4854, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28687748

RESUMO

A thorough understanding of methane sources is necessary to accomplish methane reduction targets. Urban environments, where a large variety of methane sources coexist, are one of the most complex areas to investigate. Methane sources are characterised by specific δ13C-CH4 signatures, so high precision stable isotope analysis of atmospheric methane can be used to give a better understanding of urban sources and their partition in a source mix. Diurnal measurements of methane and carbon dioxide mole fraction, and isotopic values at King's College London, enabled assessment of the isotopic signal of the source mix in central London. Surveys with a mobile measurement system in the London region were also carried out for detection of methane plumes at near ground level, in order to evaluate the spatial allocation of sources suggested by the inventories. The measured isotopic signal in central London (-45.7 ±0.5‰) was more than 2‰ higher than the isotopic value calculated using emission inventories and updated δ13C-CH4 signatures. Besides, during the mobile surveys, many gas leaks were identified that are not included in the inventories. This suggests that a revision of the source distribution given by the emission inventories is needed.

3.
Sci Rep ; 6: 25661, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27210416

RESUMO

Atmospheric CO at Egham in SE England has shown a marked and progressive decline since 1997, following adoption of strict controls on emissions. The Egham site is uniquely positioned to allow both assessment and comparison of 'clean Atlantic background' air and CO-enriched air downwind from the London conurbation. The decline is strongest (approximately 50 ppb per year) in the 1997-2003 period but continues post 2003. A 'local CO increment' can be identified as the residual after subtraction of contemporary background Atlantic CO mixing ratios from measured values at Egham. This increment, which is primarily from regional sources (during anticyclonic or northerly winds) or from the European continent (with easterly air mass origins), has significant seasonality, but overall has declined steadily since 1997. On many days of the year CO measured at Egham is now not far above Atlantic background levels measured at Mace Head (Ireland). The results are consistent with MOPITT satellite observations and 'bottom-up' inventory results. Comparison with urban and regional background CO mixing ratios in Hong Kong demonstrates the importance of regional, as opposed to local reduction of CO emission. The Egham record implies that controls on emissions subsequent to legislation have been extremely successful in the UK.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA