Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Biol Sci ; 280(1769): 20131463, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23986106

RESUMO

The deep-sea squid Grimalditeuthis bonplandi has tentacles unique among known squids. The elastic stalk is extremely thin and fragile, whereas the clubs bear no suckers, hooks or photophores. It is unknown whether and how these tentacles are used in prey capture and handling. We present, to our knowledge, the first in situ observations of this species obtained by remotely operated vehicles (ROVs) in the Atlantic and North Pacific. Unexpectedly, G. bonplandi is unable to rapidly extend and retract the tentacle stalk as do other squids, but instead manoeuvres the tentacles by undulation and flapping of the clubs' trabecular protective membranes. These tentacle club movements superficially resemble the movements of small marine organisms and suggest the possibility that G. bonplandi uses aggressive mimicry by the tentacle clubs to lure prey, which we find to consist of crustaceans and cephalopods. In the darkness of the meso- and bathypelagic zones the flapping and undulatory movements of the tentacle may: (i) stimulate bioluminescence in the surrounding water, (ii) create low-frequency vibrations and/or (iii) produce a hydrodynamic wake. Potential prey of G. bonplandi may be attracted to one or more of these as signals. This singular use of the tentacle adds to the diverse foraging and feeding strategies known in deep-sea cephalopods.


Assuntos
Decapodiformes/anatomia & histologia , Decapodiformes/fisiologia , Animais , Comportamento Alimentar , Feminino , Golfo do México , Movimento , Oceano Pacífico
2.
J Exp Biol ; 215(Pt 18): 3175-90, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22915711

RESUMO

We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 µmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.


Assuntos
Comportamento Animal/fisiologia , Decapodiformes/fisiologia , Locomoção/fisiologia , Anaerobiose , Animais , Geografia , Luz , México , Oxigênio/análise , Estações do Ano , Natação/fisiologia , Temperatura , Fatores de Tempo
3.
Front Physiol ; 9: 954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083106

RESUMO

This study investigates the development of swimming abilities and its relationship with morphology, growth, and nourishment of reared Doryteuthis opalescens paralarvae from hatching to 60 days of age. Paralarvae (2.5-11 mm mantle length - ML) were videotaped, and their behavior quantified throughout development using computerized motion analysis. Hatchlings swim dispersed maintaining large nearest neighbor distances (NND, 8.7 ML), with swimming speeds (SS) of 3-8 mm s-1 and paths with long horizontal displacements, resulting in high net to gross displacement ratios (NGDR). For 15-day-old paralarvae, swimming paths are more consistent between jets, growth of fins, length, and mass increases. The swimming pattern of 18-day-old paralarvae starved for 72 h exhibited a significant reduction in mean SS and inability to perform escape jets. A key morphological, behavioral, and ecological transition occurs at about 6 mm ML (>35-day old), when there is a clear change in body shape, swimming performance, and behavior, paths are more regularly repeated and directional swimming is evident, suggesting that morphological changes incur in swimming performance. These squid are able to perform sustained swimming and hover against a current at significantly closer NND (2.0 ML), as path displacement is reduced and maneuverability increases. As paralarvae reach 6-7 mm ML, they are able to attain speeds up to 562 mm s-1 and to form schools. Social feeding interactions (kleptoparasitism) are often observed prior to the formation of schools. Schools are always formed within areas of high flow gradient in the tanks and are dependent on squid size and current speed. Fin development is a requisite for synchronized and maneuverable swimming of schooling early juveniles. Although average speeds of paralarvae are within intermediate Reynolds numbers (Re < 100), they make the transition to the inertia-dominated realm during escape jets of high propulsion (Re > 3200), transitioning from plankton to nekton after their first month of life. The progressive development of swimming capabilities and social interactions enable juvenile squid to school, while also accelerates learning, orientation and cognition. These observations indicate that modeling of the lifecycle should include competency to exert influence over small currents and dispersal patterns after the first month of life.

4.
Proc Natl Acad Sci U S A ; 104(31): 12948-50, 2007 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-17646649

RESUMO

A unique 16-year time series of deep video surveys in Monterey Bay reveals that the Humboldt squid, Dosidicus gigas, has substantially expanded its perennial geographic range in the eastern North Pacific by invading the waters off central California. This sustained range expansion coincides with changes in climate-linked oceanographic conditions and a reduction in competing top predators. It is also coincident with a decline in the abundance of Pacific hake, the most important commercial groundfish species off western North America. Recognizing the interactive effects of multiple changes in the environment is an issue of growing concern in ocean conservation and sustainability research.


Assuntos
Decapodiformes/fisiologia , Ecossistema , Animais , California , Biologia Marinha , Oceano Pacífico , Dinâmica Populacional , Temperatura , Fatores de Tempo
5.
J Exp Biol ; 207(Pt 24): 4195-203, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15531640

RESUMO

Juvenile and adult Loligo opalescens Berry were video taped in Monterey Bay with the remotely operated vehicle (ROV) Ventana, captured with an otter trawl in Santa Monica Bay, California, and adults were taken from the Monterey Bay fishery. Behavioral observations were made over a 13 h period of video sequences. Allometry measurements were made on 157 squids ranging in size from 12 to 151 mm mantle length (ML). In addition to ML we measured the morphometric characters of fin length (FL), fin width (FW), mantle width (MW), eye diameter (ED), head width (HW), funnel aperture diameter (FA), fourth arm length (AL) and tentacle length (TL). Loligo opalescens changes shape with ontogeny due to negative allometric growth of ED, HW, TL, MW, FA and positive allometric growth of AL, FL and fin area. The allometry measurements were used to determine the size of juvenile squids video-taped in open water. A linear regression can predict dorsal ML in mm from a dimensionless ratio of ML upon ED (r2=0.857, P<0.001). Sizes and velocities of video-taped animals were estimated from 26 video sequences ranging from <1.0 to 8 s. The average velocity for squids ranging from 12-116 mm ML was 0.21 m s(-1) and the maximum velocity was 1.60 m s(-1) (116 mm ML). Allometric measurements can provide scale for 2-dimensional images in order to estimate size, velocity and age of animals.


Assuntos
Tamanho Corporal , Decapodiformes/fisiologia , Natação/fisiologia , Fatores Etários , Animais , Biometria , Pesos e Medidas Corporais , California , Modelos Lineares , Oceano Pacífico , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA