Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 69(6): 953-964.e5, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547723

RESUMO

Plant roots forage the soil for iron, the concentration of which can be dramatically lower than those needed for growth. Soil iron uptake uses the broad metal spectrum IRT1 transporter that also transports zinc, manganese, cobalt, and cadmium. Sophisticated iron-dependent transcriptional regulatory mechanisms allow plants to tightly control the abundance of IRT1, ensuring optimal absorption of iron. Here, we uncover that IRT1 acts as a transporter and receptor (transceptor), directly sensing excess of its non-iron metal substrates in the cytoplasm, to regulate its own degradation. Direct metal binding to a histidine-rich stretch in IRT1 triggers its phosphorylation by the CIPK23 kinase and facilitates the subsequent recruitment of the IDF1 E3 ligase. CIPK23-driven phosphorylation and IDF1-mediated lysine-63 polyubiquitination are jointly required for efficient endosomal sorting and vacuolar degradation of IRT1. Thus, IRT1 directly senses elevated non-iron metal concentrations and integrates multiple substrate-dependent regulations to optimize iron uptake and protect plants from highly reactive metals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metais/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/genética , Endocitose , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular , Metais/toxicidade , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Ubiquitinação , Vacúolos/metabolismo
2.
Planta ; 256(6): 112, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367624

RESUMO

MAIN CONCLUSION: IRT1 intracellular dynamics and function are finely controlled through protein-protein interactions. In plants, iron uptake from the soil is tightly regulated to allow optimal growth and development. Iron acquisition in Arabidopsis root epidermal cells requires the IRT1 transporter, which also mediates the entry of non-iron metals. In this mini-review, we describe how protein-protein interactions regulate IRT1 intracellular dynamics and IRT1-mediated metal uptake to maintain iron homeostasis. Recent interactomic data provided interesting clues on IRT1 secretion and the putative involvement of COPI- and COPII-mediated pathways. Once delivered to the plasma membrane, IRT1 can interact with other components of the iron uptake machinery to form an iron acquisition complex that likely optimizes iron entrance in root epidermal cells. Then, IRT1 may be internalized from the plasma membrane. In the past decade, IRT1 endocytosis emerged as an essential mechanism to control IRT1 subcellular localization and thus to tune iron uptake. Interestingly, IRT1 endocytosis and degradation are regulated by its non-iron metal substrates in an ubiquitin-dependent manner, which requires a set of interacting-proteins including kinases, E3 ubiquitin ligases and ESCRT complex subunits. This mechanism is essential to avoid non-iron metal overload in Arabidopsis when the iron is scarce.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Transporte Biológico , Ubiquitina/metabolismo , Metais/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
3.
Plant Physiol ; 187(4): 1839-1855, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235669

RESUMO

Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.


Assuntos
Transporte Biológico/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Microscopia de Fluorescência/métodos , Fenômenos Fisiológicos Vegetais , Transdução de Sinais/fisiologia
4.
Plant Physiol ; 184(3): 1236-1250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873629

RESUMO

In plants, iron uptake from the soil is tightly regulated to ensure optimal growth and development. Iron absorption in Arabidopsis root epidermal cells requires the IRT1 transporter that also allows the entry of certain non-iron metals, such as Zn, Mn, and Co. Recent work demonstrated that IRT1 endocytosis and degradation are controlled by IRT1 non-iron metal substrates in a ubiquitin-dependent manner. To better understand how metal uptake is regulated, we identified IRT1-interacting proteins in Arabidopsis roots by mass spectrometry and established an interactome of IRT1. Interestingly, the AHA2 proton pump and the FRO2 reductase, both of which work in concert with IRT1 in the acidification-reduction-transport strategy of iron uptake, were part of this interactome. We confirmed that IRT1, FRO2, and AHA2 associate through co-immunopurification and split-ubiquitin analyses, and uncovered that they form tripartite direct interactions. We characterized the dynamics of the iron uptake complex and showed that FRO2 and AHA2 ubiquitination is independent of the non-iron metal substrates transported by IRT1. In addition, FRO2 and AHA2 are not largely endocytosed in response to non-iron metal excess, unlike IRT1. Indeed, we provide evidence that the phosphorylation of IRT1 in response to high levels of non-iron metals likely triggers dissociation of the complex. Overall, we propose that a dedicated iron-acquisition protein complex exists at the cell surface of Arabidopsis root epidermal cells to optimize iron uptake.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Transporte Biológico/fisiologia , Células Epidérmicas/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Variação Genética , Genótipo , Raízes de Plantas/genética
5.
Proc Natl Acad Sci U S A ; 111(22): 8293-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843126

RESUMO

In plants, the controlled absorption of soil nutrients by root epidermal cells is critical for growth and development. IRON-REGULATED TRANSPORTER 1 (IRT1) is the main root transporter taking up iron from the soil and is also the main entry route in plants for potentially toxic metals such as manganese, zinc, cobalt, and cadmium. Previous work demonstrated that the IRT1 protein localizes to early endosomes/trans-Golgi network (EE/TGN) and is constitutively endocytosed through a monoubiquitin- and clathrin-dependent mechanism. Here, we show that the availability of secondary non-iron metal substrates of IRT1 (Zn, Mn, and Co) controls the localization of IRT1 between the outer polar domain of the plasma membrane and EE/TGN in root epidermal cells. We also identify FYVE1, a phosphatidylinositol-3-phosphate-binding protein recruited to late endosomes, as an important regulator of IRT1-dependent metal transport and metal homeostasis in plants. FYVE1 controls IRT1 recycling to the plasma membrane and impacts the polar delivery of this transporter to the outer plasma membrane domain. This work establishes a functional link between the dynamics and the lateral polarity of IRT1 and the transport of its substrates, and identifies a molecular mechanism driving polar localization of a cell surface protein in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Polaridade Celular/fisiologia , Ferro/metabolismo , Metais/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Homeostase/fisiologia , Corpos Multivesiculares/metabolismo , Fenótipo , Raízes de Plantas/citologia , Plantas Geneticamente Modificadas , Solo , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Physiol ; 166(2): 500-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25034018

RESUMO

Nutrient and water uptake from the soil is essential for plant growth and development. In the root, absorption and radial transport of nutrients and water toward the vascular tissues is achieved by a battery of specialized transporters and channels. Modulating the amount and the localization of these membrane transport proteins appears as a way to drive their activity and is essential to maintain nutrient homeostasis in plants. This control first involves the delivery of newly synthesized proteins to the plasma membrane by establishing check points along the secretory pathway, especially during the export from the endoplasmic reticulum. Plasma membrane-localized transport proteins are internalized through endocytosis followed by recycling to the cell surface or targeting to the vacuole for degradation, hence constituting another layer of control. These intricate mechanisms are often regulated by nutrient availability, stresses, and endogenous cues, allowing plants to rapidly adjust to their environment and adapt their development.


Assuntos
Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Endocitose , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteólise , Solo
7.
J Biol Chem ; 288(13): 8815-25, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23362252

RESUMO

The retromer complex localizes to endosomal membranes and is involved in protein trafficking. In mammals, it is composed of a dimer of sorting nexins and of the core retromer consisting of vacuolar protein sorting (VPS)26, VPS29, and VPS35. Although homologs of these proteins have been identified in plants, how the plant retromer functions remains elusive. To better understand the role of VPS components in the assembly and function of the core retromer, we characterize here Arabidopsis vps26-null mutants. We show that impaired VPS26 function has a dramatic effect on VPS35 levels and causes severe phenotypic defects similar to those observed in vps29-null mutants. This implies that functions of plant VPS26, VPS29, and VPS35 are tightly linked. Then, by combining live-cell imaging with immunochemical and genetic approaches, we report that VPS35 alone is able to bind to endosomal membranes and plays an essential role in VPS26 and VPS29 membrane recruitment. We also show that the Arabidopsis Rab7 homolog RABG3f participates in the recruitment of the core retromer to the endosomal membrane by interacting with VPS35. Altogether our data provide original information on the molecular interactions that mediate assembly of the core retromer in plants.


Assuntos
Arabidopsis/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/metabolismo , Endossomos/metabolismo , Genótipo , Imunoquímica/métodos , Microscopia Confocal/métodos , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plasmídeos/metabolismo , Frações Subcelulares/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética
8.
Proc Natl Acad Sci U S A ; 108(32): E450-8, 2011 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-21628566

RESUMO

Plants take up iron from the soil using the iron-regulated transporter 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Endocitose , Ferro/metabolismo , Ubiquitina/metabolismo , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Endossomos/metabolismo , Lisina/metabolismo , Modelos Biológicos , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ubiquitinação , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo
9.
Plant Signal Behav ; 16(11): 1975088, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34514930

RESUMO

Iron (Fe) is involved in multiple processes that contribute to the maintenance of the cellular homeostasis of all living beings. In photosynthetic organisms, Fe is notably required for photosynthesis. Although iron is generally abundant in the environment, it is frequently poorly bioavailable. This review focuses on the molecular strategies that photosynthetic organisms have evolved to optimize iron acquisition, using Arabidopsis thaliana, rice (Oryza sativa), and some unicellular algae as models. Non-graminaceous plants, including Arabidopsis, take up iron from the soil by an acidification-reduction-transport process (strategy I) requiring specific proteins that were recently shown to associate in a dedicated complex. On the other hand, graminaceous plants, such as rice, use the so-called strategy II to acquire iron, which relies on the uptake of Fe3+ chelated by phytosiderophores that are secreted by the plant into the rhizosphere. However, apart these main strategies, accessory mechanisms contribute to robust iron uptake in both Arabidopsis and rice. Unicellular algae combine reductive and non-reductive mechanisms for iron uptake and present important specificities compared to land plants. Since the majority of the molecular actors required for iron acquisition in algae are not conserved in land plants, questions arise about the evolution of the Fe uptake processes upon land colonization.


Assuntos
Arabidopsis/metabolismo , Cianobactérias/metabolismo , Ferro/metabolismo , Redes e Vias Metabólicas , Oryza/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Fotossíntese
10.
Plant J ; 57(2): 346-55, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18808456

RESUMO

Maize plasma membrane aquaporins (ZmPIPs, where PIP is the plasma membrane intrinsic protein) fall into two groups, ZmPIP1s and ZmPIP2s, which, when expressed alone in mesophyll protoplasts, are found in different subcellular locations. Whereas ZmPIP1s are retained in the endoplasmic reticulum (ER), ZmPIP2s are found in the plasma membrane (PM). We previously showed that, when co-expressed with ZmPIP2s, ZmPIP1s are relocalized to the PM, and that this relocalization results from the formation of hetero-oligomers between ZmPIP1s and ZmPIP2s. To determine the domains responsible for the ER retention and PM localization, respectively, of ZmPIP1s and ZmPIP2s, truncated and mutated ZmPIPs were generated, together with chimeric proteins created by swapping the N- or C-terminal regions of ZmPIP2s and ZmPIP1s. These mutated proteins were fused to the mYFP and/or mCFP, and the fusion proteins were expressed in maize mesophyll protoplasts, and were then localized by microscopy. This allowed us to identify a diacidic motif, DIE (Asp-Ile-Glu), at position 4-6 of the N-terminus of ZmPIP2;5, that is essential for ER export. This motif was conserved and functional in ZmPIP2;4, but was absent in ZmPIP2;1. In addition, we showed that the N-terminus of ZmPIP2;5 was not sufficient to cause the export of ZmPIP1;2 from the ER. A study of ZmPIP1;2 mutants suggested that the N- and C-termini of this protein are probably not involved in ER retention. Together, these results show that the trafficking of maize PM aquaporins is differentially regulated depending on the isoform, and involves a specific signal and mechanism.


Assuntos
Aquaporinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aquaporinas/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Alinhamento de Sequência , Zea mays/genética
11.
Planta ; 229(6): 1171-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19252923

RESUMO

Iron is an essential nutrient for all organisms but toxic when present in excess. Consequently, plants carefully regulate their iron uptake, dependent on the FRO2 ferric reductase and the IRT1 transporter, to control its homeostasis. Arabidopsis IRT2 gene, whose expression is induced in root epidermis upon iron deprivation, was shown to encode a functional iron/zinc transporter in yeast, and proposed to function in iron acquisition from the soil. In this study, we demonstrate that, unlike its close homolog IRT1, IRT2 is not involved in iron absorption from the soil since overexpression of IRT2 does not rescue the iron uptake defect of irt1-1 mutant and since a null irt2 mutant shows no chlorosis in low iron. Consistently, an IRT2-green fluorescent fusion protein, transiently expressed in culture cells, localizes to intracellular vesicles. However, IRT2 appears strictly co-regulated with FRO2 and IRT1, supporting the view that IRT2 is an integral component of the root response to iron deficiency in root epidermal cells. We propose a model where IRT2 likely prevents toxicity from IRT1-dependent iron fluxes in epidermal cells, through compartmentalization.


Assuntos
Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Northern Blotting , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Vesículas Citoplasmáticas/metabolismo , FMN Redutase/genética , FMN Redutase/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Microscopia de Fluorescência , Mutação , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Front Plant Sci ; 9: 991, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050548

RESUMO

Arabidopsis flotillin 2 (At5g25260) belongs to the group of plant flotillins, which are not well characterized. In contrast, metazoan flotillins are well known as plasma membrane proteins associated with membrane microdomains that act as a signaling hub. The similarity of plant and metazoan flotillins, whose functions most likely consist of affecting other proteins via protein-protein interactions, determines the necessity of detecting their interacting partners in plants. Nevertheless, identifying the proteins that form complexes on the plasma membrane is a challenging task due to their low abundance and hydrophobic character. Here we present an approach for mapping Arabidopsis thaliana flotillin 2 plasma membrane interactors, based on the immunoaffinity purification of crosslinked and enriched plasma membrane proteins with mass spectrometry detection. Using this approach, 61 proteins were enriched in the AtFlot-GFP plasma membrane fraction, and 19 of them were proposed to be flotillin 2 interaction partners. Among our proposed partners of Flot2, proteins playing a role in the plant response to various biotic and abiotic stresses were detected. Additionally, the use of the split-ubiquitin yeast system helped us to confirm that plasma-membrane ATPase 1, early-responsive to dehydration stress protein 4, syntaxin-71, harpin-induced protein-like 3, hypersensitive-induced response protein 2 and two aquaporin isoforms interact with flotillin 2 directly. Based on the results of our study and the reported properties of Flot2 interactors, we propose that Flot2 complexes may be involved in plant-pathogen interactions, water transport and intracellular trafficking.

13.
Biochim Biophys Acta ; 1758(8): 1142-56, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16580626

RESUMO

Aquaporins (AQPs) are believed to act as "cellular plumbers", allowing plants to rapidly alter their membrane water permeability in response to environmental cues. This study of AQP regulation at both the RNA and protein levels has revealed a large number of possible mechanisms. Currently, modulation of AQP expression in planta is considered the strategy of choice for elucidating the role of AQPs in plant physiology. This review highlights the fact that this strategy is complicated by many factors, such as the incomplete characterization of transport selectivity of the targeted AQP, the fact that AQPs might act as multifunctional channels with multiple physiological roles, and the number of post-translational regulation mechanisms. The classification of AQPs as constitutive or stress-responsive isoforms is also proposed.


Assuntos
Aquaporinas/biossíntese , Aquaporinas/fisiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/fisiologia , Plantas/metabolismo , Aquaporinas/genética , Transporte Biológico Ativo , Permeabilidade da Membrana Celular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Concentração Osmolar , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Sais/metabolismo , Água/metabolismo
14.
Commun Integr Biol ; 8(3): e1038441, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26479146

RESUMO

Plasma membrane proteins play pivotal roles in mediating responses to endogenous and environmental cues. Regulation of membrane protein levels and establishment of polarity are fundamental for many cellular processes. In plants, IRON-REGULATED TRANSPORTER 1 (IRT1) is the major root iron transporter but is also responsible for the absorption of other divalent metals such as manganese, zinc and cobalt. We recently uncovered that IRT1 is polarly localized to the outer plasma membrane domain of plant root epidermal cells upon depletion of its secondary metal substrates. The endosome-recruited FYVE1 protein interacts with IRT1 in the endocytic pathway and plays a crucial role in the establishment of IRT1 polarity, likely through its recycling to the cell surface. Our work sheds light on the mechanisms of radial transport of nutrients across the different cell types of plant roots toward the vascular tissues and raises interesting parallel with iron transport in mammals.

15.
Plant Signal Behav ; 8(9)2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23803747

RESUMO

The retromer is an endosome-localized complex involved in protein trafficking. To better understand its function and regulation in plants, we recently investigated how Arabidopsis retromer subunits assemble and are targeted to endosomal membranes and highlighted original features compared with mammals. We characterized Arabidopsis vps26 null mutant and showed that it displays severe developmental defaults similar to those observed in vps29 mutant. Here, we go further by describing new phenotypic defects associated with loss of VPS26 function, such as inhibition of lateral root initiation. Recently, we showed that VPS35 subunit plays a crucial role in the recruitment of the plant retromer to endosomes, probably through an interaction with the Rab7 homolog RABG3f. In this work, we now show that contrary to mammals, Arabidopsis Rab5 homologs do not seem to be necessary for the recruitment of the core retromer to endosomal membranes, which highlights a new specificity of the plant retromer.


Assuntos
Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
16.
Plant Signal Behav ; 6(10): 1597-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21918375

RESUMO

In plants, the tight regulation of plasma membrane transporters is essential to maintain nutrient homeostasis. The mechanisms controlling the abundance of transporters, and other integral plasma membrane proteins, now come to light. Ubiquitination appears as a major signal initiating cargo endocytosis and sorting into multivesicular bodies prior to degradation in the vacuole. We have indeed demonstrated that the root iron transporter IRT1 is subjected to ubiquitin-dependent trafficking in root epidermal cells. This control is crucial to keep IRT1 levels at the cell surface low and to cope with the toxicity associated with other readily available metal substrates of IRT1. Our work combined with recent report on the BOR1 boron transporter establishes ubiquitination as a conserved mechanism of plasma membrane protein trafficking in plants, and highlights its importance for plant nutrition. 


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Fenômenos Fisiológicos da Nutrição , Plantas/metabolismo , Ubiquitinação , Membrana Celular/metabolismo , Modelos Biológicos , Transporte Proteico , Ubiquitina/metabolismo
18.
Proc Natl Acad Sci U S A ; 104(30): 12359-64, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17636130

RESUMO

Zea mays plasma membrane intrinsic proteins (ZmPIPs) fall into two groups, ZmPIP1s and ZmPIP2s, that exhibit different water channel activities when expressed in Xenopus oocytes. ZmPIP1s are inactive, whereas ZmPIP2s induce a marked increase in the membrane osmotic water permeability coefficient, P(f). We previously showed that, in Xenopus oocytes, ZmPIP1;2 and ZmPIP2;1 interact to increase the cell P(f). Here, we report the localization and interaction of ZmPIP1s and ZmPIP2s in living maize cells. ZmPIPs were fused to monomeric yellow fluorescent protein and/or monomeric cyan fluorescent protein and expressed transiently in maize mesophyll protoplasts. When expressed alone, ZmPIP1 fusion proteins were retained in the endoplasmic reticulum, whereas ZmPIP2s were found in the plasma membrane. Interestingly, when coexpressed with ZmPIP2s, ZmPIP1s were relocalized to the plasma membrane. Using FRET/fluorescence lifetime imaging microscopy, we demonstrated that this relocalization results from interaction between ZmPIP1s and ZmPIP2s. Immunoprecipitation experiments provided additional evidence for the association of ZmPIP1;2 and ZmPIP2;1 in maize roots and suspension cells. These data suggest that PIP1-PIP2 interaction is required for in planta PIP1 trafficking to the plasma membrane to modulate plasma membrane permeability.


Assuntos
Aquaporinas/metabolismo , Membrana Celular/metabolismo , Zea mays/citologia , Zea mays/metabolismo , Aquaporinas/genética , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Ligação Proteica , Protoplastos/metabolismo , Zea mays/genética
19.
Plant Mol Biol ; 62(1-2): 305-23, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16845476

RESUMO

Water movement across root tissues occurs by parallel apoplastic, symplastic, and transcellular pathways that the plant can control to a certain extent. Because water channels or aquaporins (AQPs) play an important role in regulating water flow, studies on AQP mRNA and protein expression in different root tissues are essential. Here, we quantified and localized the expression of Zea mays plasma membrane AQPs (ZmPIPs) in primary root tip using in situ and quantitative RT-PCR and immunodetection approaches. All ZmPIP genes except ZmPIP2;7 were expressed in primary roots. Expression was found to be dependent on the developmental stage of the root, with, in general, an increase in expression towards the elongation and mature zones. Two genes, ZmPIP1;5 and ZmPIP2;5, showed the greatest increase in expression (up to 11- and 17-fold, respectively) in the mature zone, where they accounted for 50% of the total expressed ZmPIPs. The immunocytochemical localization of ZmPIP2;1 and ZmPIP2;5 in the exodermis and endodermis indicated that they are involved in root radial water movement. In addition, we detected a polar localization of ZmPIP2;5 to the external periclinal side of epidermal cells in root apices, suggesting an important role in water uptake from the root surface. Finally, protoplast swelling assays showed that root cells display a variable, but globally low, osmotic water permeability coefficient (Pf < 10 microm/s). However, the presence of a population of cells with a higher Pf (up to 26 microm/s) in mature zone of the root might be correlated with the increased expression of several ZmPIP genes.


Assuntos
Aquaporinas/genética , Membrana Celular/fisiologia , Raízes de Plantas/fisiologia , Zea mays/fisiologia , Sequência de Aminoácidos , Aquaporinas/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosfatidilinositol 4,5-Difosfato/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zea mays/enzimologia , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA