Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Mol Med ; 27(16): 2412-2423, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37438979

RESUMO

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer. Cisplatin is commonly used in the treatment of many malignant tumours including NSCLC. The innate drug sensitivity greatly affects the clinical efficacy of cisplatin-based chemotherapy. As a plasma membrane adhesion molecule, amphoterin-induced gene and ORF-2 (AMIGO2) initially identified as a neurite outgrowth factor has been recently found to play a crucial role in cancer occurrence and progression. However, it is still unclear whether AMIGO2 is involved in innate cisplatin sensitivity. In the present study, we provided the in vitro and in vivo evidences indicating that the alteration of AMIGO2 expression triggered changes of innate cisplatin sensitivity as well as cisplatin-induced pyroptosis in NSCLC. Further results revealed that AMIGO2 might inhibit cisplatin-induced activation of (caspase-8 and caspase-9)/caspase-3 via stimulating PDK1/Akt (T308) signalling axis, resulting in suppression of GSDME cleavage and the subsequent cell pyroptosis, thereby decreasing the sensitivity of NSCLC cells to cisplatin treatment. The results provided a new insight that AMIGO2 regulated the innate cisplatin sensitivity of NSCLC through GSDME-mediated pyroptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Caspase 3/metabolismo , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteínas do Tecido Nervoso/genética , Piroptose , Transdução de Sinais , Gasderminas/efeitos dos fármacos , Gasderminas/metabolismo
2.
J Cell Physiol ; 234(3): 2500-2510, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317562

RESUMO

Previous studies suggest that specific binding to the complex consisting of fibroblast growth factor receptor-1 (FGFR1) and the coreceptor beta-Klotho (KLB) is the premise for human FGF19 and FGF21 activating the downstream signaling cascades, and regulating the metabolic homeostasis. However, it was found that human FGF21 loses its ability to bind to FGFR1-KLB after iodination with Na125 I and chloramine T, whereas human FGF19 retained its affinity for FGFR1-KLB even after iodination. The molecular mechanisms underlying these differences remained elusive. In this study, we first demonstrated that an intramolecular disulfide bond was formed between cysteine-102 and cysteine-121 in FGF21, implying that the oxidation of the cysteine to cysteic acid, which may interfere with the active conformation of FGF21, did not occur during the iodination procedures, and thus ruled out the possibility of the two conserved cysteine residues mediating the loss of FGF21 binding affinity to FGFR1-KLB upon iodination. Site-directed mutagenesis and molecular modeling were further applied to determine the residue(s) responsible for the loss of FGFR1-KLB affinity. The results showed that mutation of a single tyrosine-207, but not the other five tyrosine residues in FGF21, to a phenylalanine retained the FGFR1-KLB affinity of FGF21 even after iodination, whereas replacing the corresponding phenylalanine residue with tyrosine in FGF19 did not alter its binding affinity to FGFR1-KLB, but decreased the receptor binding ability of the iodinated protein, suggesting that tyrosine-207 is the crucial amino acid responsible for the loss of specifying FGFR1-KLB affinity of the iodinated FGF21.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas de Membrana/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Aminoácidos/efeitos dos fármacos , Aminoácidos/genética , Linhagem Celular , Cloraminas/farmacologia , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Halogenação , Homeostase/genética , Humanos , Proteínas Klotho , Oxirredução/efeitos dos fármacos , Fenilalanina/genética , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Iodeto de Sódio/farmacologia , Compostos de Tosil/farmacologia , Tirosina/efeitos dos fármacos
3.
Int J Nanomedicine ; 18: 2677-2691, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228445

RESUMO

Background: Osteosarcoma is a malignant bone tumor with a high rate of lung metastasis and mortality. It has been demonstrated that resveratrol can inhibit tumor proliferation and metastasis, but its application is limited due to poor water solubility and low bioavailability. In this study, we proposed to prepare folate-modified liposomes loaded with resveratrol to investigate its anti-osteosarcoma effect in vitro and in vivo. Methods: We prepared and characterized resveratrol liposomes modified with folate (denoted as, FA-Res/Lps). The effects of FA-Res/Lps on human osteosarcoma cell 143B proliferation, apoptosis, and migration were investigated by MTT, cell cloning, wound-healing assay, transwell, and flow cytometry. A xenograft tumor and lung metastasis model of osteosarcoma was constructed to study the therapeutic effects of FA-Res/Lps on the growth and metastasis of osteosarcoma in vivo. Results: The FA-Res/Lps were prepared with a particle size of 118.5 ± 0.71 and a small dispersion coefficient of 0.154 ± 0.005. We found that FA-modified liposomes significantly increased resveratrol uptake by osteosarcoma cells 143B in flow cytometric assay, resulting in FA-Res/Lps, which inhibit tumor proliferation, migration and induce apoptosis more effectively than free Res and Res/Lps. The mechanism of action may be associated with the inhibition of JAK2/STAT3 signaling. In vivo imaging demonstrated that FA-modified DiR-modified liposomes significantly increased the distribution of drugs at the tumor site, leading to significant inhibition of osteosarcoma growth and metastasis by FA-Res/Lps. Furthermore, we found that FA-Res/Lps did not cause any adverse effects on mice body weight, liver, or kidney tissues. Conclusion: Taken together, the anti-osteosarcoma effect of resveratrol is significantly enhanced when it is loaded into FA-modified liposomes. FA-Res/Lps is a promising strategy for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Camundongos , Animais , Lipossomos/farmacologia , Resveratrol/farmacologia , Ácido Fólico/farmacologia , Lipopolissacarídeos/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Proliferação de Células , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Linhagem Celular Tumoral , Janus Quinase 2 , Fator de Transcrição STAT3
4.
Ying Yong Sheng Tai Xue Bao ; 28(11): 3759-3766, 2017 Nov.
Artigo em Zh | MEDLINE | ID: mdl-29692120

RESUMO

The application of sewage and manure in protected vegetable cultivation can induce the occurrence of heavy metals contamination. The present research studied the transformation of heavy metals (Cd, Cu, Pb and Zn) by incubating contaminated protected soil with maize straw and then leaching. The results showed that soil pH was significantly decreased, being more evident in maize straw treatment; soil Eh dropped quickly below -280 mV. Maize straw treatment promoted the activation of Cd, Cu, Pb and Zn from soil, and the total percent of oxidizable fraction and residual fraction of Cd, Cu, Pb and Zn declined at 9th day; the amount of Cd, Cu, Pb and Zn in soil reduced 18.1%, 19.0%, 16.1% and 15.7% at 15th day, respectively. Compared to control, maize straw treatment could increase the concentrations of dissolved Cd and Zn, but Cu decreased. The concentration of colloidal-bound Cd and Pb increased, Cu decreased and no significant change occurred in Zn in maize straw treatment. Strong reductive approach could activate heavy metals in protected vegetable soil, increase the risk of heavy metals accumulation in vegetables, and possibly cause water pollution accompanied with soil water mobilization.


Assuntos
Metais Pesados , Esgotos , Poluentes do Solo , Solo , Verduras
5.
Oncotarget ; 7(18): 26709-23, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27050374

RESUMO

Multidrug resistance protein-1 (MDR1) has been proven to be associated with the development of chemoresistance to imatinib (Glivec, STI571) which displays high efficacy in treatment of BCR-ABL-positive chronic myelogenous leukemia (CML). However, the possible mechanisms of MDR1 modulation in the process of the resistance development remain to be defined. Herein, galectin-1 was identified as a candidate modulator of MDR1 by proteomic analysis of a model system of leukemia cell lines with a gradual increase of MDR1 expression and drug resistance. Coincidently, alteration of galectin-1 expression triggers the change of MDR1 expression as well as the resistance to the cytotoxic drugs, suggesting that augment of MDR1 expression engages in galectin-1-mediated chemoresistance. Moreover, we provided the first data showing that NF-κB translocation induced by P38 MAPK activation was responsible for the modulation effect of galectin-1 on MDR1 in the chronic myelogenous leukemia cells. Galectin-1 might be considered as a novel target for combined modality therapy for enhancing the efficacy of CML treatment with imatinib.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Galectina 1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA