RESUMO
Phonon nonlinearities play an important role in hybrid quantum networks and on-chip quantum devices. We investigate the phonon statistics of a mechanical oscillator in hybrid systems composed of an atom and one or two standard optomechanical cavities. An efficiently enhanced atom-phonon interaction can be derived via a tripartite atom-photon-phonon interaction, where the atom-photon coupling depends on the mechanical displacement without practically changing a cavity frequency. This novel mechanism of optomechanical interactions, as predicted recently by Cotrufo et al. [Phys. Rev. Lett.118, 133603 (2017)10.1103/PhysRevLett.118.133603], is fundamentally different from standard ones. In the enhanced atom-phonon coupling, the strong phonon nonlinearity at a single-excitation level is obtained in the originally weak-coupling regime, which leads to the appearance of phonon blockade. Moreover, the optimal parameter regimes are presented both for the cases of one and two cavities. We compared phonon-number correlation functions of different orders for mechanical steady states generated in the one-cavity hybrid system, revealing the occurrence of phonon-induced tunneling and different types of phonon blockade. Our approach offers an alternative method to generate and control a single phonon in the quantum regime and could have potential applications in single-phonon quantum technologies.
RESUMO
We improve the test of the gravitational inverse-square law at the submillimeter range by suppressing the vibration of the electrostatic shielding membrane to reduce the disturbance coupled from the residual surface potential. The result shows that, at a 95% confidence level, the gravitational inverse-square law holds (|α|≤1) down to a length scale λ=48 µm. This work establishes the strongest bound on the magnitude α of the Yukawa violation in the range of 40-350 µm, and improves the previous bounds by up to a factor of 3 at the length scale λ≈70 µm. Furthermore, the constraints on the power-law potentials are improved by about a factor of 2 for k=4 and 5.
RESUMO
By using a torsion pendulum and a rotating eightfold symmetric attractor with dual modulation of both the interested signal and the gravitational calibration signal, a new test of the gravitational inverse-square law at separations down to 295 µm is presented. A dual-compensation design by adding masses on both the pendulum and the attractor was adopted to realize a null experiment. The experimental result shows that, at a 95% confidence level, the gravitational inverse-square law holds (|α|≤1) down to a length scale λ=59 µm. This work establishes the strongest bound on the magnitude α of Yukawa-type deviations from Newtonian gravity in the range of 70-300 µm, and improves the previous bounds by up to a factor of 2 at the length scale λ≈160 µm.
RESUMO
We report a new test of the gravitational inverse square law at millimeter ranges by using a dual-modulation torsion pendulum. An I-shaped symmetric pendulum and I-shaped symmetric attractors were adopted to realize a null experimental design. The non-Newtonian force between two macroscopic tungsten plates is measured at separations ranging down to 0.4 mm, and the validity of the null experimental design was checked by non-null Newtonian gravity measurements. We find no deviations from the Newtonian inverse square law with 95% confidence level, and this work establishes the most stringent constraints on non-Newtonian interaction in the ranges from 0.7 to 5.0 mm, and a factor of 8 improvement is achieved at the length scale of several millimeters.