RESUMO
Molecular-based multiferroic materials that possess ferroelectric and ferroelastic orders simultaneously have attracted tremendous attention for their potential applications in multiple-state memory devices, molecular switches, and information storage systems. However, it is still a great challenge to effectively construct novel molecular-based multiferroic materials with multifunctionalities. Generally, the structure of these materials possess high symmetry at high temperatures, while processing an obvious order-disorder or displacement-type ferroelastic or ferroelectric phase transition triggered by symmetry breaking during the cooling processes. Therefore, these materials can only function below the Curie temperature (Tc), the low of which is a severe impediment to their practical application. Despite great efforts to elevate Tc, designing single-phase crystalline materials that exhibit multiferroic orders above room temperature remains a challenge. Here, an inverse temperature symmetry-breaking phenomenon was achieved in [FPM][Fe3(µ3-O)(µ-O2CH)8] (FPM stands for 3-(3-formylamino-propyl)-3,4,5,6-tetrahydropyrimidin-1-ium, which acts as the counterions and the rotor component in the network), enabling a ferroelastoelectric phase at a temperature higher than Tc (365 K). Upon heating from room temperature, two-step distinct symmetry breaking with the mm2Fm species leads to the coexistence of ferroelasticity and ferroelectricity in the temperature interval of 365-426 K. In the first step, the FPM cations undergo a conformational flip-induced inverse temperature symmetry breaking; in the second step, a typical ordered-disordered motion-induced symmetry breaking phase transition can be observed, and the abnormal inverse temperature symmetry breaking is unprecedented. Except for the multistep ferroelectric and ferroelastic switching, this complex also exhibits fascinating nonlinear optical switching properties. These discoveries not only signify an important step in designing novel molecular-based multiferroic materials with high working temperatures, but also inspire their multifunctional applications such as multistep switches.
RESUMO
This study developed a new zirconium metal-organic framework (MOF) luminophore named Zr-DPA@TCPP with dual-emission electrochemiluminescence (ECL) characteristics at a resolved potential. First, Zr-DPA@TCPP with a core-shell structure was effectively synthesized through the self-assembly of 9,10-di(p-carboxyphenyl)anthracene (DPA) and 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) as the respective organic ligands and the Zr cluster as the metal node. The reasonable integration of the two organic ligands DPA and TCPP with ECL properties into a single monomer, Zr-DPA@TCPP, successfully exhibited synchronous anodic and cathodic ECL signals. Besides, due to the impressively unique property of ferrocene (Fc), which can quench the anodic ECL but cannot affect the cathodic ECL signal, the ratiometric ECL biosensor was cleverly designed by using the cathode signal as an internal reference. Thus, combined with DNA recycle amplification reactions, the ECL biosensor realized sensitive ratiometric detection of HPV-16 DNA with the linear range of 1 fM-100 pM and the limit of detection (LOD) of 596 aM. The distinctive dual-emission properties of Zr-DPA@TCPP provided a new idea for the development of ECL luminophores and opened up an innovative avenue of fabricating the ratiometric ECL platform.
Assuntos
Técnicas Biossensoriais , Estruturas Metalorgânicas , Zircônio/química , Estruturas Metalorgânicas/química , Papillomavirus Humano 16 , Medições Luminescentes , DNA/química , Limite de Detecção , Técnicas EletroquímicasRESUMO
Owing to the limitations of dual-signal luminescent materials and coreactants, constructing a ratiometric electrochemiluminescence (ECL) biosensor based on a single luminophore is a huge challenge. This work developed an excellent zirconium metal-organic framework (MOF) Zr-TBAPY as a single ECL luminophore, which simultaneously exhibited cathodic and anodic ECL without any additional coreactants. First, Zr-TBAPY was successfully prepared by a solvothermal method with 1,3,6,8-tetra(4-carboxyphenyl)pyrene (TBAPY) as the organic ligand and Zr4+ cluster as the metal node. The exploration of ECL mechanisms confirmed that the cathodic ECL of Zr-TBAPY originated from the pathway of reactive oxygen species (ROS) as the cathodic coreactant, which is generated by dissolved oxygen (O2), while the anodic ECL stemmed from the pathway of generated Zr-TBAPY radical itself as the anodic coreactant. Besides, N,N-diethylethylenediamine (DEDA) was developed as a regulator to ECL signals, which quenched the cathodic ECL and enhanced the anodic ECL, and the specific mechanisms of its dual action were also investigated. DEDA can act as the anodic coreactant while consuming the cathodic coreactant ROS. Therefore, the coreactant-free ratiometric ECL biosensor was skillfully constructed by combining the regulatory role of DEDA with the signal amplification reaction of catalytic hairpin assembly (CHA). The ECL biosensor realized the ultrasensitive ratio detection of HIV DNA. The linear range was 1 fM to 100 pM, and the limit of detection (LOD) was as low as 550 aM. The outstanding characteristic of Zr-TBAPY provided new thoughts for the development of ECL materials and developed a new way of fabricating the coreactant-free and single-luminophore ratiometric ECL platform.
Assuntos
Técnicas Biossensoriais , DNA Viral , Técnicas Eletroquímicas , Medições Luminescentes , Estruturas Metalorgânicas , Zircônio , Zircônio/química , Estruturas Metalorgânicas/química , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , DNA Viral/análise , Técnicas Biossensoriais/métodos , Limite de Detecção , Humanos , HIV/isolamento & purificaçãoRESUMO
BACKGROUND: Endometriosis is well known as a chronic inflammatory disease. The development of endometriosis is heavily influenced by the estrogen receptor ß (ERß), while NOD-like receptors (NLRs) family CARD domain-containing 5 (NLRC5) exhibits anti-inflammatory properties during endometriosis. However, whether NLRC5-mediated anti-inflammation is involved in the ERß-mediated endometriosis is still uncertain. This study aimed to assess that relation. METHODS: Nine cases of eutopic endometrial tissue and ten cases of ectopic endometrial tissue were collected from patients with endometriosis, and endometrial samples from ten healthy fertile women were analyzed, and the expression levels of ERß were quantified using immunohistochemistry (IHC). Subsequently, we constructed mouse model of endometriosis by intraperitoneal injection. We detected the expression of ERß, NLRC5, tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-10 and measured the volume of ectopic lesions in mice with endometriosis. In vitro, human endometrial stromal cells (hESCs) were transfected respectively with ERß-overexpressing and NLRC5-overexpressing plasmids. We then assessed the expression of ERß and NLRC5 using quantitative real-time PCR (qRT-PCR) and western blot analysis. Furthermore, we measured the concentrations of TNF-α, IL-6, and IL-10 in the cell culture supernatant through enzyme-linked immunosorbent assay (ELISA). Additionally, we evaluated the migration and invasion ability of hESCs using transwell and wound healing assays. RESULTS: Inhibition of NLRC5 expression promotes the development of ectopic lesions in mice with endometriosis, upregulates the expression of pro-inflammatory factors TNF-α and IL-6, and downregulates the expression of anti-inflammatory factor IL-10. The high expression of NLRC5 in endometriosis depended on the ERß overexpression. And ERß promoted the migration of hESCs partially depend on inflammatory microenvironment. Lastly, NLRC5 overexpression inhibited ERß-mediated development and inflammatory response of endometriosis. CONCLUSIONS: Our results suggest that the innate immune molecule NLRC5-mediated anti-inflammation participates in ERß-mediated endometriosis development, and partly clarifies the pathological mechanism of endometriosis, expanding our knowledge of the specific molecules related to the inflammatory response involved in endometriosis and potentially providing a new therapeutic target for endometriosis.
Assuntos
Endometriose , Receptor beta de Estrogênio , Peptídeos e Proteínas de Sinalização Intracelular , Adulto , Animais , Feminino , Humanos , Camundongos , Modelos Animais de Doenças , Endometriose/metabolismo , Endometriose/patologia , Endometriose/genética , Endométrio/metabolismo , Endométrio/patologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Imuno-Histoquímica , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismoRESUMO
The development of novel catalysts for the rapid detoxification of sulfur mustard holds paramount importance in the field of military defense. In this work, titanium dioxide-phosphomolybdic acid sub-1 nm nanobelts (TiO2/PMA SNBs) are employed as effective catalysts for the ultra-fast degradation of mustard gas simulants (2-chloroethyl ethyl sulfide, CEES) with 100% selectivity and a half-life (t1/2, time required for 50% conversion) as short as 12 s, which is the fastest time to the best of the knowledge. Even in dark conditions, this material can still achieve over 90% conversion within 5 min. A mechanism study reveals that the rapid generation rate of 1O2 and O2 â¢- in the presence of TiO2/PMA SNBs and H2O2 plays a crucial role in facilitating the efficient oxidation of CEES. A filter layer of a gas mask loaded with TiO2/PMA SNBs and H2O2/polyvinylpyrrolidone cross-linked complex (PHP) is constructed, which demonstrates remarkable stability and exhibits exceptional efficacy in the detoxification of CEES in the presence of a small amount of water. This innovation offers great potential for enhancing personal protective equipment in practical applications.
RESUMO
BACKGROUND: At present, embryologists are attempting to use conventional in vitro fertilization (cIVF) as an alternative to intracytoplasmic sperm injection (ICSI) for preimplantation genetic testing (PGT). However, the potential parental contamination origin of sperm cells and cumulus cells is considered the main limiting factor in the inability of cIVF embryos to undergo PGT. METHODS: In this study, we established an IVF-PGTA assay for parental contamination tests with a contamination prediction model based on allele frequencies and linkage disequilibrium (LD) to compute the log-likelihood ratio (LLR) under competing ploidy hypotheses, and then verified its sensitivity and accuracy. Finally, comparisons of the effectiveness of SNP-based analysis and LLR-based IVF-PGTA among 40 cIVF embryos was performed, based on both statistical analysis of the parental contamination rate and chromosomal ploidy concordance rate between TE biopsy and ICM isolations. RESULTS: With IVF-PGTA assay, biopsies with 10% maternal contamination could be detected accurately, and contamination caused by sperm cells could be eliminated completely. Utilizing LLR-based or single Nucleotide Polymorphism (SNP) -based analyses, our comprehensive examination of 40 clinically discarded fresh cIVF embryos revealed an absence of paternal contamination. Strikingly, the LLR-based analysis uniquely revealed a mere instance of 24% maternal contamination within the trophectoderm cell (TE) biopsy of 5* embryo. Furthermore, it was solely through this analysis that embryo (9-F) was identified as a triploid of paternal origin. CONCLUSIONS: In this study, we developed a new bioinformatics analysis method for identifying parental contamination during IVF-PGT, especially for couples with nonmale factor infertility.
Assuntos
Fertilização in vitro , Desequilíbrio de Ligação , Diagnóstico Pré-Implantação , Humanos , Fertilização in vitro/métodos , Feminino , Diagnóstico Pré-Implantação/métodos , Masculino , Polimorfismo de Nucleotídeo Único , Funções Verossimilhança , Gravidez , Testes Genéticos/métodos , Frequência do Gene , EspermatozoidesRESUMO
A simple, sensitive dual-emission probe was developed for the detection of phosphate (Pi). The probe Tb-BTB/DPA was synthesized by mixing dual-ligand, 1,3,5-tri(4-carboxyphenyl) benzene (H3BTB) and dipicolinic acid (DPA), with metal ions Tb3+ in ethanol-water solution at 40â for 2 h. Tb-BTB/DPA exhibits two emission peaks, the emission at 362 nm is attributed to H3BTB, an energy transfer between Tb3+ nodes, and DPA further enhances the fluorescence of Tb3+ at 544 nm. Pi competes with ligand H3BTB to coordinate Tb3+, resulting in partial collapse of the Tb-BTB/DPA structure and interrupting the electron transfer between H3BTB and Tb3+. Therefore, the emission at 362 nm is enhanced, while the emission at 544 nm is unchanged, and a ratiometric fluorescence method is developed to detect Pi. Tb-BTB/DPA exhibits good linearity within the Pi concentration range (0.1-50 µmol/L), and the detection limit was 25.8 nmol/L. This study provides a new way to prepare probes with dual emission sensing properties.
RESUMO
Weather data errors affect energy management by influencing the accuracy of building energy predictions. This study presents a long short-term memory (LSTM) prediction model based on the "Energy Detective" dataset (Shanghai, China) and neighboring weather station data. The study analyzes the errors of different weather data sources (Detective and A) at the same latitude and longitude. Subsequently, it discusses the effects of weather errors from neighboring weather stations (Detective, A, B, C, and D) on energy forecasts for the next hour and day including the selection process for neighboring weather stations. Furthermore, it compares the forecast results for summer and autumn. The findings indicate a correlation between weather errors from neighboring weather stations and energy consumption. The median R-Square for predicting the next hour reached 0.95. The model's predictions for the next day exhibit a higher Prediction Interval Mean Width (139.0 in summer and 146.1 in autumn), indicating a greater uncertainty.
RESUMO
In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated â¢O2-, â¢OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.
Assuntos
Fotólise , Catálise , Concentração de Íons de Hidrogênio , Compostos Férricos/química , Prata/química , Rodaminas/química , Poluentes Químicos da Água/químicaRESUMO
Bacillus anthracis is a Gram-positive bacterium that can cause acute infection and anthracnose, which is a serious concern for human health. Determining Bacillus anthracis through its spore biomarker dipicolinic acid (DPA) is crucial, and there is a strong need for a method that is rapid, sensitive, and selective. Here, we created Eu(III)-coordination polymers (Eu-CPs) with surfaces that have abundant carboxyl and hydroxyl groups. This was achieved by using citric acid and europium nitrate hexahydrate as precursors in a straightforward one-pot hydrothermal process. These Eu-CPs were then successfully utilized for highly sensitive DPA determination. The fluorescence (FL) emission of Eu-CPs, which is typically weak due to the coordination of Eu(III) with water molecules, was significantly enhanced in the presence of DPA. This enhancement is attributed to the competitive binding between DPA's carboxyl or hydroxyl groups and water molecules. As a result, the absorbed energy of DPA, when excited by 280 nm ultraviolet light, is transferred to Eu-CPs through an antenna effect. This leads to the emission of the characteristic red fluorescence of Eu3+ at 618 nm. A strong linear relationship was observed between the enhanced FL intensity and DPA concentration in the range of 0.5-80 µM. This relationship allowed for a limit of detection (LOD) of 15.23 nM. Furthermore, the Eu-CPs we constructed can effectively monitor the release of DPA from Bacillus subtilis spores, thereby further demonstrating the potential significance of this strategy in the monitoring and management of anthrax risk. This highlights the novelty of this approach in practical applications, provides a valuable determination technique for Bacillus anthracis, and offers insights into the development cycle of microorganisms.
Assuntos
Bacillus anthracis , Európio , Ácidos Picolínicos , Polímeros , Ácidos Picolínicos/química , Európio/química , Polímeros/química , Espectrometria de Fluorescência/métodos , Complexos de Coordenação/químicaRESUMO
BACKGROUND: Modified polysaccharides have greatly expanded applications in comparison with native polysaccharides due to their improved compatibility and interactions with proteins and active compounds in food-related areas. Nonetheless, there is a noticeable dearth of research concerning the utilization of carboxymethyl starch (CMS) as a microcapsule wall material in food processing, despite its common use in pharmaceutical delivery. The development of an economical and safe embedding carrier using CMS and gelatin (GE) holds immense importance within the food-processing industry. In this work, the potential of innovative coacervates formed by the combination of GE and CMS as a reliable, stable, and biodegradable embedding carrier is evaluated by turbidity measurements, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and rheological measurements. RESULTS: The results indicate that GE-CMS coacervates primarily resulted from electrostatic interactions and hydrogen bonding. The optimal coacervation was observed at pH 4.6 and with a GE/CMS blend ratio of 3:1 (w/w). However, the addition of NaCl reduced coacervation and made it less sensitive to temperature changes (35-55 °C). In comparison with individual GE or CMS, the coacervates exhibited higher thermal stability, as shown by TGA. X-ray diffraction analysis shows that the GE-CMS coacervates maintained an amorphous structure. Rheological testing reveals that the GE-CMS coacervates exhibited shear-thinning behavior and gel-like properties. CONCLUSION: Overall, attaining electroneutrality in the mixture boosts the formation of a denser structure and enhances rheological properties, leading to promising applications in food, biomaterials, cosmetics, and pharmaceutical products. © 2023 Society of Chemical Industry.
Assuntos
Gelatina , Polissacarídeos , Amido/análogos & derivados , Gelatina/química , Polissacarídeos/química , ProteínasRESUMO
The retina is a light-sensitive membrane responsible for optical signal reception and concatenation with the optic nerve. Retinal damage causes blurred vision or visual dysfunction. Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus (DM) that is induced by the interaction of multiple factors and mechanisms. Hyperglycemia and hypertension are potential risk factors for DR. With the growing number of DM patients, the incidence of DR increases if DM is untreated. Epidemiological data show that DR is a leading cause of blindness in working-aged adults. Regular ophthalmological check-ups, laser treatment, and interdisciplinary consultation for reducing visual atrophy can help prevent and treat DR. Although the pathogenesis of DR is complex, and the exact pathological mechanism of DR needs to be further elucidated to promote new drug research and development against DR. The entire pathological process of DR involves increased oxidative stress (microvascular dysfunction, mitochondrial dysfunction) and chronic inflammation (inflammatory infiltration, cell necrosis) and impairment of the renin-angiotensin system (microcirculation dysregulation). This review aims to summarize the pathological mechanisms underlying the development of DR to improve clinical diagnosis and effective treatment of DR.
Assuntos
Diabetes Mellitus , Retinopatia Diabética , Doenças Retinianas , Adulto , Humanos , Pessoa de Meia-Idade , Inflamação , Retina , AtrofiaRESUMO
Ovarian cancer (OC) is one of the most prevalent malignant tumors affecting women's life and health. Since OC has a poor prognosis due to extensive metastasis, there is a need to explore a new mechanism of OC metastasis. microRNAs (miRs) are single-stranded, non-coding RNAs. miR-9 has been reported to promote cancer and may provide a new strategy for OC diagnosis. The purpose of this study was to examine the function and underlying mechanism of miR-9 in OC. RT-qPCR was used to assess miR-9 expression levels. Transwell assays were used to determine the number of migrating and invading OC cells. The protein expression levels of the PI3K/AKT/mTOR/GSK3ß signaling pathway were examined using western blotting. The results informed that, when compared to normal ovarian tissues, miR-9 was remarkably expressed in OC tissues, and hypoxia might lead to overexpression of miR-9-5p while inhibiting miR-9 notably suppressed the migrating and invading cell numbers in OC cells. In vivo, miR-9-5p knockdown inhibited tumor growth in a subcutaneous nude mice model of SKOV3 cells. Our findings suggest that miR-9 could be an underlying oncogene in OC, opening up new avenues for OC diagnosis and treatment of OC by targeting miR-9.
Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Glicogênio Sintase Quinase 3 beta/metabolismo , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Movimento CelularRESUMO
Metal-organic frameworks (MOFs) with abundant active sites, a class of materials composed of metal nodes and organic ligands, is widely used for photocatalytic degradation of pollutants. However, the rapid recombination of photoinduced carriers of MOFs limits its photocatalytic degradation performance. Herein, Ti3 C2 Tx nanosheets-based NH2 -MIL-101(Fe) hybrids with Schottky-heterojunctions were fabricated by inâ situ hydrothermal assembly for improved photocatalytic activity. The photodegradation efficiencies of the NH2 -MIL-101(Fe)/Ti3 C2 Tx (N-M/T) hybrids for phenol and chlorophenol were 96.36 % and 99.83 % within 60â minutes, respectively. The N-M/T Schottky-heterojunction duly transferred electrons to the Ti3 C2 Tx nanosheets surface via built-in electric fields, effectively suppressing the recombination of photogenerated carriers, thereby improving the photocatalytic performance of NH2 -MIL-101(Fe). Moreover, the Fe-mixed-valence in the N-M/T led to improvement in the efficiency of the inâ situ generated photo-Fenton reactions, further enhancing the photocatalytic activity with more generated reactive oxygen species (ROS). The study proposes a highly effective removal of phenolic pollutants in wastewater.
Assuntos
Clorofenóis , Poluentes Ambientais , Estruturas Metalorgânicas , Ligantes , Estruturas Metalorgânicas/química , Fenóis , Espécies Reativas de Oxigênio , Titânio , Águas ResiduáriasRESUMO
Carbon dots have promising prospects for analytical and monitoring purposes, but are greatly hindered by the aggregation-induced luminescence quenching owing to the π-π interaction or the non-radiation-excited radical complex formation. Herein hydrothermally prepared orange-yellow fluorescent carbon dots (O-CDs) show an aggregation-induced fluorescence enhancement (AIFE) with Cu2+ owing to the complexation of Cu(II) and the O-CDs. Cu2+ was then sensitively and selectively detected in the linear range from 0.02 to 30 µM with the detection limit of 14 nM, making the detection of Cu2+ in fresh water and E. coli lysate successful, showing that the as-prepared O-CDs could be well applied to the environmental monitoring of heavy metals.
Assuntos
Carbono , Pontos Quânticos , Cobre , Escherichia coli , Corantes Fluorescentes , Espectrometria de FluorescênciaRESUMO
Novel 3D metal formate frameworks {[Ba4Cl][M3(HCO2)13]}n (M = Mn for 1, Co for 2, and Mg for 3) were successfully assembled via microwave-assisted synthesis. The complexes are rare coordination polymers crystallized at space group P4cc with the polar point group C4v. In the structure, the MII ions are bridged by two types of anti-anti formate in forming a 3D pcu framework, and additional formates coordinate to the unsaturated sites of the MII ions in the framework, giving an anionic M-formate net. Ba4Cl clusters take the cavities of the net as charge balance, in which the chloride ion deviates from the center of the barium ions. The asymmetric Ba4Cl structure is transmitted throughout the crystal resulting in polar structure, which is further confirmed by nonlinear optical and piezoelectric test. Nonlinear optical activity tests of 1 and 3 show SHG signals 0.32 and 0.28 times that of KDP, while 2 has a piezoelectric coefficient d33 of 6.8 pC/N along polar axis. Magnetic studies reveal antiferromagnetic coupling between MII ions in 1 and 2. Spin canting was found only in 2 with anisotropic CoII ions, and 2 is a canted antiferromagnetically with TN = 5 K. Further field-induced spin flop was also found in 2 with a critical field 0.9 T.
RESUMO
ABSTRACT: Teng, Y, Yu, Q, Yu, X, Zhan, L, and Wang, K. Neuropsychological study on the effects of boxing upon athletes' memory. J Strength Cond Res 36(12): 3462-3467, 2022-This study attempts to explore the impairment of athletes' memory caused by 1 year of boxing training according to the n-back test and Chinese auditory learning test (CALT). Accordingly, 58 new athletes were prospectively analyzed from a sports school, where 28 athletes who received boxing training were regarded as the exposed group and 30 athletes who received matched training were taken as unexposed group for a duration of 1 year. All subjects respectively completed an n-back test (to test working memory) and a CALT test (to test short-term memory and long-term memory) before and after the training. During the tests, accuracy and reaction time from the n-back test and the correct number from CALT were recorded. The accuracy of the boxing group was observed to be lower than that of the matched group in the 2-back test ( p < 0.05), whereas the reaction time of the boxing group was longer than that of the matched group ( p < 0.05) after a year of boxing practice. The results of CALT1 (short-term memory), CALT8 (long-term memory), and CALT9 (recognition memory) were lower in the boxing group than that in the matched group after a year ( p < 0.05). The results suggest that exposure to 1 year of boxing training can impair the boxers' working memory, short-term memory, and long-term memory. Therefore, boxers should strengthen their head protection during training to avoid frequent impacts to the head.
Assuntos
Boxe , Esportes , Humanos , Atletas , Tempo de Reação , Aprendizagem , Testes NeuropsicológicosRESUMO
Endometriosis refers to a benign chronic gynecological disorder, and is defined as the ectopic growth of endometrium in pelvic cavity. Endometriosis affects about 10% of reproductive-aged women. Unfortunately, the pathogenesis of endometriosis remains obscure, and the disease witnesses a lack of effective therapy approaches. Therefore, more research needs to be performed to throw light on endometriosis, its pathogenesis, and therapy. Long noncoding RNAs (lncRNAs), which are defined as functional cellular RNA longer than 200 nucleotides, have been implicated in many chronic disorders. It has been suggested that lncRNAs are closely related to the endometriosis process. Nevertheless, the molecular mechanisms by which lncRNAs associate with endometriosis should be elucidated more detailed. In our brief review, we first exhibit the aberrant lncRNAs expression in endometriosis. Then, we talk about the molecular mechanisms underlying lncRNAs in endometriosis. Finally, we also present the potential of lncRNAs as biomarkers for endometriosis.
Assuntos
Endometriose/genética , RNA Longo não Codificante/genética , Animais , Biomarcadores/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Endométrio/patologia , Feminino , Expressão Gênica/genética , HumanosRESUMO
Peroxynitrite (ONOO-), a highly reactive nitrogen species (RNS) generated mainly in mitochondria, has been identified to be associated with numerous pathophysiological processes, and thus accurate ONOO- imaging with superior sensitivity and selectivity is highly desirable. Herein, we prepared a new type of carbon quantum dots (CQDs) with mitochondria-targeting function without the aid of any targeting molecules via a simple one-step hydrothermal route. The as-prepared CQDs not only displayed relatively uniform size distribution, few surface defects, high photostability, and excellent biocompatibility but also exhibited good selective fluorescence turn-off response toward ONOO-, owing to the oxidation of amino groups on the surface of carbon dots. A great linear correlation between the quenching efficiency and ONOO- concentration in the range from 0.15 to 1.0 µM with a detection limit of 38.9 nM is shown. Moreover, the as-prepared CQDs acting as a functional optical probe through a self-targeting mechanism were successfully applied for in situ visualization of endogenous ONOO- generated in the mitochondria of live cells, providing great promise for elucidating the complex biological roles of ONOO- in related pathological processes.
Assuntos
Microcefalia , Pontos Quânticos , Carbono , Humanos , Ácido PeroxinitrosoRESUMO
BACKGROUND AND PURPOSE: Symptomatic hemorrhage contributes to an increased risk of repeated bleeding and morbidity in cerebral cavernous malformation (CCM). A better understanding of morbidity after CCM hemorrhage would be helpful to identify patients of higher risk for unfavorable outcome and tailor individualized management. METHODS: We identified 282 consecutive patients who referred to our institute from 2014 to 2018 for CCM with symptomatic hemorrhage and had an untreated follow-up period over 6 months after the first hemorrhage. The morbidity after hemorrhage was described in CCM of different features. Nomogram to predict morbidity was formulated based on the multivariable model of risk factors. The predictive accuracy and discriminative ability of nomogram were determined with concordance index (C-index) and calibration curve, and further validated in an independent CCM cohort of a prospective multicenter study from 2019 to 2020. RESULTS: The overall morbidity of CCM was 26.2% after a mean follow-up of 1.9 years (range 0.5-3.5 years) since the first hemorrhage. The morbidity during untreated follow-up was associated with hemorrhage ictus (adjusted odds ratio per ictus increase, 4.17 [95% CI, 1.86-9.33]), modified Rankin Scale score at initial hemorrhage (adjusted odds ratio per point increase, 2.57 [95% CI, 1.82-3.63]), brainstem location (adjusted odds ratio, 2.93 [95% CI, 1.28-6.68]), and associated developmental venous anomaly (adjusted odds ratio, 2.21 [95% CI, 1.01-4.83]). Subgroup analysis revealed similar findings in brainstem and non-brainstem CCM. Nomogram was contracted based on these features. The calibration curve showed good agreement between nomogram prediction and actual observation. The C-index of nomogram predicting morbidity was 0.83 (95% CI, 0.77-0.88). In validation cohort, the nomogram maintained the discriminative ability (C-index, 0.87 [95% CI, 0.78-0.96]). CONCLUSIONS: Multiple symptomatic hemorrhages, initial neurological function after hemorrhage, brainstem location, and associated developmental venous anomaly were associated with morbidity of CCM hemorrhage. The nomogram represented a practical approach to provide individualized risk assessment for CCM patients. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT04076449.