Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 97(11): e0095823, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37846983

RESUMO

IMPORTANCE: As an emerging porcine enteropathogenic coronavirus that has the potential to infect humans, porcine deltacoronavirus (PDCoV) is receiving increasing attention. However, no effective commercially available vaccines against this virus are available. In this work, we designed a spike (S) protein and receptor-binding domain (RBD) trimer as a candidate PDCoV subunit vaccine. We demonstrated that S protein induced more robust humoral and cellular immune responses than the RBD trimer in mice. Furthermore, the protective efficacy of the S protein was compared with that of inactivated PDCoV vaccines in piglets and sows. Of note, the immunized piglets and suckling pig showed a high level of NAbs and were associated with reduced virus shedding and mild diarrhea, and the high level of NAbs was maintained for at least 4 months. Importantly, we demonstrated that S protein-based subunit vaccines conferred significant protection against PDCoV infection.


Assuntos
Infecções por Coronavirus , Coronavirus , Doenças dos Suínos , Vacinas de Subunidades Antigênicas , Animais , Feminino , Humanos , Camundongos , Coronavirus/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Deltacoronavirus , Suínos , Vacinas de Subunidades Antigênicas/administração & dosagem
2.
J Virol ; 97(10): e0106323, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732788

RESUMO

IMPORTANCE: Porcine epidemic diarrhea (PED) caused by PED virus (PEDV) remains a big threat to the swine industry worldwide. Vaccination with live attenuated vaccine is a promising method to prevent and control PED, because it can elicit a more protective immunity than the killed vaccine, subunit vaccine, and so on. In this study, we found two obvious deletions in the genome of a high passage of AH2012/12. We further confirmed the second deletion which contains seven amino acids at the carboxy-terminus of the S2 gene and the start codon of ORF3 can reduce its pathogenicity in vivo. Animal experiments indicated that the recombinant PEDV with deleted carboxy-terminus of S gene showed higher IgG, IgA, neutralization antibodies, and protection effects against virus challenge than the killed vaccine. These data reveal that the engineering of the carboxy-terminus of the S2 gene may be a promising method to develop live attenuated vaccine candidates of PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Diarreia , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Suínos , Doenças dos Suínos/virologia , Vacinas Atenuadas/genética , Vacinas de Produtos Inativados , Vacinas Virais/genética , Virulência
3.
Microb Pathog ; 169: 105642, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35710089

RESUMO

Caprine parainfluenza virus type 3 (CPIV3), a new strain of virus, was isolated from the goats in 2014 in China. Studies have shown that viral infection can induce changes in the expression profile of host miRNAs, which modulate natural immune responses and viral infection. In this study, we report that bta-miR-677 suppressed CPIV3 replication in Madin-Darby bovine kidney (MDBK) cells and guinea pigs. Bta-miR-677 overexpression promoted type I interferon (IFN-I) and IFN-stimulated genes (ISGs) production, thereby inhibiting CPIV3 replication, while bta-miR-677 inhibitor suppressed the antiviral innate immune response to promoted viral replication in MDBK cells. We showed that bta-miR-677 suppresses CPIV3 replication via directly targeted the 3'-untranslated region (3'-UTR) of mitochondrial antiviral signaling protein (MAVS) thus enhancing IFN pathway in MDBK cells. We also demonstrated that bta-miR-677 agomir could inhibit CPIV3 proliferation in guinea pigs, with much lower viral RNA levels in lung and trachea. Guinea pigs showed no obvious pathological changes and less severe lung lesions in bta-miR-677 agomir treated group at 7 dpi. This study contributes to our understanding of the molecular mechanisms underlying CPIV3 pathogenesis.


Assuntos
Interferon Tipo I , MicroRNAs , Regiões 3' não Traduzidas , Animais , Antivirais/farmacologia , Bovinos , Linhagem Celular , Proliferação de Células , Cabras , Cobaias , Interferon Tipo I/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Parainfluenza 3 Humana/genética , Replicação Viral
4.
Microb Pathog ; 170: 105723, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35981694

RESUMO

Porcine deltacoronavirus (PDCoV) is an emenging swine enteropathogenic coronavirus that can cause high mortality rate. It affects pigs of all ages, but most several in neonatal piglets. Little is known regarding the pathogenicity of PDCoV against 27-day-old piglets. In this study, 27-day-old piglets were experimentally infected with PDCoV CZ2020 from cell culture, the challenged piglets do not have obvious symptoms from 1 to 7 days post-challenge (DPC), while viral shedding was detected in rectal swab at 1 DPC. Tissues of small intestines displayed slight macroscopic and microscopic lesions with no viral antigen detection. On the other hand, 27-day-old piglets were infected with PDCoV from intestinal contents, the piglets developed mild to severe diarrhea, shedding increasing from 2 to 7 DPC, and developed macroscopic and microscopic lesions in small intestines with clear viral antigen confirmed by immunohistochemistry staining. Indicating the small intestine was still the major target organ in PDCoV-challenged pigs at the age of 27-day-old. Diarrhea caused by PDCoV from intestinal contents in 27-day-old piglets is less reported. Thus, our results might provide new insights into the pathogenesis of PDCoV.


Assuntos
Doenças dos Suínos , Animais , Técnicas de Cultura de Células , Deltacoronavirus , Diarreia/patologia , Conteúdo Gastrointestinal , Suínos , Virulência
5.
Virology ; 597: 110150, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38917690

RESUMO

Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Infecções por Coronavirus , Deltacoronavirus , Doenças dos Suínos , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Feminino , Deltacoronavirus/imunologia , Camundongos , Gravidez , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais Recém-Nascidos
6.
Vet Microbiol ; 293: 110070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593624

RESUMO

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Assuntos
DNA Helicases , Inflamação , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Animais , Suínos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Fosforilação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , RNA Helicases/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Replicação Viral , Coronavirus/imunologia , Coronavirus/fisiologia , Linhagem Celular , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/genética , Imunidade Inata
7.
Heliyon ; 9(4): e14710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035382

RESUMO

Porcine Teschoviruses (PTVs) are associated with polioencephalomyelitis and various diseases, including reproductive and gastrointestinal disorders of pigs and wild boars, but rarely detected in the feces of pigs. In this study, a sample of swine diarrhea that tested positive for PTVs is subjected to high-throughput sequencing. The viral genome was 7221 nucleotides (nt) in length, which was consisted of twelve genes. Phylogenetic analysis showed and it was closely related to the PTV-HNMY(MG755212.1). The nucleotide homology of VP1 gene of PTVs JS2021 with PTV-1AF 296102.1 reached 82.97%, belonging to a branch of PTV-1 serotype. The nucleotide homology of VP1 protein with other serotypes of PTV is quite different from that of other serotypes of PTV. Bioinformatics analysis showed that PTVs have four capsid proteins, namely VP1, VP2, VP3 and VP4. The VP1 encodes a 29 kDa protein, which is the main protective antigen, a theoretical isoelectric point of 6.73, no transmembrane domain, no signal peptide and potential phosphorylation site. The VP1 protein is an unstable hydrophilic intracellular protein, which contains four secondary structures: irregular curl (c), extended chain (e), α-helix (h) and ß-folded (t). The tertiary structure is heart-shaped and has multiple B cell epitopes. By analyzing the tertiary structure, we found that the amino acid at position 129 of VP1 mutated and reduction a larger alpha helix. This may lead to the main cause of piglet diarrhea. These findings enriched our knowledge of the viruses in the role of swine diarrhea, and help to develop an effective strategy for disease prevention and control.

8.
Virology ; 567: 26-33, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952414

RESUMO

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that cause severe diarrhea, resulting in high mortality in neonatal piglets. Little is known regarding the pathogenicity of PDCoV in different infective dose and the dynamic changes in the composition of the gut microbiota in PDCoV-induced diarrhea piglets. In this study, 5-day-old piglets were experimentally infected with different dose of PDCoV. The challenged piglets developed typical symptoms, characterized by acute and severe watery diarrhea from 1 to 8 days post-inoculation (DPI), and viral shedding was detected in rectal swab until 11 DPI. Tissues of small intestines displayed significant macroscopic and microscopic lesions with clear viral antigen expression. However, no significant differences among groups were found in challenged piglets. Then alteration in gut microbiota in the jejunum and colon of PDCoV infected-piglets were analyzed using 16S rRNA sequencing. PDCoV infection reduced bacterial diversity and richness, and significantly altered the structure and abundance of the microbiota from the phylum to genus. Fusobacterium, and Proteobacteria was significantly increased (P < 0.05), while the abundance of Bacteroidota was markedly decreased in the infected-piglets. Furthermore, microbial function prediction indicated that the changes in intestinal bacterial also affected the immune system, excretory system, circulatory system, neurodegenerative disease, cardiovascular disease, xenobiotics biodegradation and metabolism, etc. These findings suggest that regulating gut microbiota community may be an effective approach for preventing PDCoV infection.


Assuntos
Infecções por Coronavirus/veterinária , Deltacoronavirus/patogenicidade , Microbioma Gastrointestinal , Doenças dos Suínos/virologia , Animais , Antígenos Virais/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colo/microbiologia , Infecções por Coronavirus/microbiologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Diarreia/patologia , Diarreia/veterinária , Diarreia/virologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Jejuno/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/patologia , Virulência , Eliminação de Partículas Virais , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA