Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2212178119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322718

RESUMO

Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.


Assuntos
Ácido Cítrico , Simportadores , Animais , Camundongos , Ácido Cítrico/metabolismo , Simportadores/metabolismo , Durapatita/metabolismo , Citratos , Ciclo do Ácido Cítrico , Osteoblastos/metabolismo , Mamíferos/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L252-L265, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38226418

RESUMO

Pulmonary arterial hypertension (PAH) is a morbid disease characterized by significant lung endothelial cell (EC) dysfunction. Prior work has shown that microvascular endothelial cells (MVECs) isolated from animals with experimental PAH and patients with PAH exhibit significant abnormalities in metabolism and calcium signaling. With regards to metabolism, we and others have shown evidence of increased aerobic glycolysis and evidence of increased utilization of alternate fuel sources (such as fatty acids) in PAH EC. In the realm of calcium signaling, our prior work linked increased activity of the transient receptor potential vanilloid-4 (TRPV4) channel to increased proliferation of MVECs isolated from the Sugen/Hypoxia rat model of PAH (SuHx-MVECs). However, the relationship between metabolic shifts and calcium abnormalities was not clear. Specifically, whether shifts in metabolism were responsible for increasing TRPV4 channel activity in SuHx-MVECs was not known. In this study, using human data, serum samples from SuHx rats, and SuHx-MVECs, we describe the consequences of increased MVEC fatty acid oxidation in PAH. In human samples, we observed an increase in long-chain fatty acid levels that was associated with PAH severity. Next, using SuHx rats and SuHx-MVECs, we observed increased intracellular levels of lipids. We also show that increasing intracellular lipid content increases TRPV4 activity, whereas inhibiting fatty acid oxidation normalizes basal calcium levels in SuHx-MVECs. By exploring the fate of fatty acid-derived carbons, we observed that the metabolite linking increased intracellular lipids to TRPV4 activity was ß-hydroxybutyrate (BOHB), a product of fatty acid oxidation. Finally, we show that BOHB supplementation alone is sufficient to sensitize the TRPV4 channel in rat and mouse MVECs. Returning to humans, we observe a transpulmonary BOHB gradient in human patients with PAH. Thus, we establish a link between fatty acid oxidation, BOHB production, and TRPV4 activity in MVECs in PAH. These data provide new insight into metabolic regulation of calcium signaling in lung MVECs in PAH.NEW & NOTEWORTHY In this paper, we explore the link between metabolism and intracellular calcium levels in microvascular endothelial cells (MVECs) in pulmonary arterial hypertension (PAH). We show that fatty acid oxidation promotes sensitivity of the transient receptor potential vanilloid-4 (TRPV4) calcium channel in MVECs isolated from a rodent model of PAH.


Assuntos
Antineoplásicos , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Ratos , Cálcio/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Ácidos Graxos/metabolismo , Lipídeos , Pulmão/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Canais de Cátion TRPV/metabolismo
3.
Prostate ; 84(7): 644-655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409853

RESUMO

BACKGROUND: Lipid reprogramming is a known mechanism to increase the energetic demands of proliferating cancer cells to drive and support tumorigenesis and progression. Elevated lipid droplets (LDs) are a well-known alteration of lipid reprogramming in many cancers, including prostate cancer (PCa), and are associated with high tumor aggressiveness as well as therapy resistance. The mechanism of LD accumulation and specific LD functions are still not well understood; however, it has been shown that LDs can form as a protective mechanism against lipotoxicity and lipid peroxidation in the cell. METHODS: This study investigated the significance of LDs in PCa. This was done by staining, imaging, image quantification, and flow cytometry analysis of LDs in PCa cells. Additionally, lipidomics and metabolomics experiments were performed to assess the difference of metabolites and lipids in control and treatment surviving cancer cells. Lastly, to assess clinical significance, multiple publicly available datasets were mined for LD-related data. RESULTS: Our study demonstrated that prostate and breast cancer cells that survive 72 h of chemotherapy treatment have elevated LDs. These LDs formed in tandem with elevated reactive oxygen species levels to sequester damaged and excess lipids created by oxidative stress, which promoted cell survival. Additionally, by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) (which catalyzes triglyceride synthesis into LDs) and treating with chemotherapy simultaneously, we were able to decrease the overall amount of LDs and increase cancer cell death compared to treating with chemotherapy alone. CONCLUSIONS: Overall, our study proposes a potential combination therapy of DGAT1 inhibitors and chemotherapy to increase cancer cell death.


Assuntos
Gotículas Lipídicas , Neoplasias da Próstata , Masculino , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Próstata/patologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia
4.
Semin Cancer Biol ; 86(Pt 3): 180-188, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390455

RESUMO

Cancer cells possess various biological processes to ensure survival and proliferation even under unfavorable conditions such as hypoxia, nutrient deprivation, and oxidative stress. One of the defining hallmarks of cancer cells is their ability to reprogram their metabolism to suit their needs. Building on over a decade of research in the field of cancer metabolism, numerous unique metabolic capabilities are still being discovered in the present day. One recent discovery in the field of cancer metabolism that was hitherto unexpected is the ability of cancer cells to store vital metabolites in forms that can be readily converted to glucose and glutamine for later use. We called these forms "metabolic reservoirs." While many studies have been conducted on storage molecules such as glycogen, triglyceride, and phosphocreatine (PCr), few have explored the concept of "metabolic reservoirs" for cancer as a whole. In this review, we will provide an overview of this concept, the previously known reservoirs including glycogen, triglyceride, and PCr, and the new discoveries made including the newly discovered reservoirs such as N-acetyl-aspartyl-glutamate (NAAG), lactate, and γ- aminobutyric acid (GABA). We will also discuss whether disrupting these reservoir cycles may be a new avenue for cancer treatment.


Assuntos
Ácido Glutâmico , Neoplasias , Humanos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Glicogênio/metabolismo , Ácido Láctico/metabolismo , Triglicerídeos
5.
Anal Biochem ; 632: 114206, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33894159

RESUMO

The use of metabolomic technologies and stable isotope labeling recently enabled us to discover an unexpected role of N-acetyl-aspartyl-glutamate (NAAG): NAAG is a glutamate reservoir for cancer cells. In the current study, we first found that glucose carbon contributes to the formation of NAAG and its precursors via glycolysis, demonstrating the existence of a glucose-NAAG-glutamate cycle in cancer cells. Second, we found that glucose carbon and, unexpectedly, glutamine carbon contribute to the formation of lactate via glutaminolysis. Importantly, lactate carbon can be incorporated into glucose via gluconeogenesis, demonstrating the existence of a glutamine-lactate-glucose cycle. While a glucose-lactate-glucose cycle was expected, the finding of a glutamine-lactate-glucose cycle was unforeseen. And third, we discovered that glutamine carbon is incorporated into γ-aminobutyric acid (GABA), revealing a glutamate-GABA-succinate cycle. Thus, NAAG, lactate, and GABA can play important roles as storage molecules for glutamate, glucose, and succinate carbon in oncogenic MYC-transformed P493 lymphoma B cells (MYC-ON cells) but not in non-oncogenic MYC-OFF cells. Altogether, examining the isotopic labeling patterns of metabolites derived from labeled 13C6-glucose or 13C515N2-glutamine helped reveal the presence of what we have named "metabolic reservoir cycles" in oncogenic cells.


Assuntos
Marcação por Isótopo , Linfoma de Células B/metabolismo , Metabolômica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Isótopos de Carbono , Linhagem Celular Tumoral , Dipeptídeos/metabolismo , Humanos , Linfoma de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Ácido gama-Aminobutírico/metabolismo
6.
Adv Exp Med Biol ; 1311: 217-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014546

RESUMO

Diabetes mellitus, commonly known as diabetes, and cancer are two of the most common diseases plaguing the world today. According to the Centers for Disease Control and Prevention (CDC), there are currently more than 20 million people with diabetes in the United States [1]. According to the International Agency for Research on Cancer (IARC), there were around 18 million people diagnosed with cancer, with approximately ten million deaths globally in 2018 [2]. Given the prevalence and deadliness of diabetes and cancer, these two diseases have long been the focus of many researchers with the goal of improving treatment outcomes. While diabetes and cancer may seem to be two very different diseases at first glance, they share several similarities, especially regarding their metabolic characteristics. This chapter discusses the similarities and relationships between the metabolism of diabetes, especially type 2 diabetes (T2D), and cancer, including their abnormal glucose and amino acid metabolism, the contribution of hyperglycemia to oncogenic mutation, and the contribution of hyperinsulinemia to cancer progression. Investigating the metabolic interplay between diabetes and cancer in an effort to exploit this connection for cancer treatment has the potential to significantly improve clinical efficacy.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hiperinsulinismo , Neoplasias , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Neoplasias/epidemiologia , Estados Unidos
7.
Adv Exp Med Biol ; 1311: 3-15, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014531

RESUMO

Otto Warburg observed a peculiar phenomenon in 1924, unknowingly laying the foundation for the field of cancer metabolism. While his contemporaries hypothesized that tumor cells derived the energy required for uncontrolled replication from proteolysis and lipolysis, Warburg instead found them to rapidly consume glucose, converting it to lactate even in the presence of oxygen. The significance of this finding, later termed the Warburg effect, went unnoticed by the broader scientific community at that time. The field of cancer metabolism lay dormant for almost a century awaiting advances in molecular biology and genetics, which would later open the doors to new cancer therapies [2, 3].


Assuntos
Glicólise , Neoplasias , Metabolismo dos Carboidratos , Metabolismo Energético , Glucose , Humanos , Oxigênio
8.
Adv Exp Med Biol ; 1311: 137-147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014540

RESUMO

The beginning of the twenty-first century offered new advances in cancer research, including new knowledge about the tumor microenvironment (TME). Because TMEs provide the niches in which cancer cells, fibroblasts, lymphocytes, and immune cells reside, they play a crucial role in cancer cell development, differentiation, survival, and proliferation. Throughout cancer progression, the TME constantly evolves, causing cancer cells to adapt to the new conditions. The heterogeneity of cancer, evidenced by diverse proliferation rates, cellular structures, metabolisms, and gene expressions, presents challenges for cancer treatment despite the advances in research. This chapter discusses how different TMEs lead to specific metabolic adaptations that drive cancer progression.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Fenótipo
9.
Proteomics ; 19(21-22): e1800451, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31231915

RESUMO

The targeting of glutamine metabolism specifically via pharmacological inhibition of glutaminase 1 (GLS1) has been translated into clinical trials as a novel therapy for several cancers. The results, though encouraging, show room for improvement in terms of tumor reduction. In this study, the glutaminase II pathway is found to be upregulated for glutamate production upon GLS1 inhibition in pancreatic tumors. Moreover, genetic suppression of glutamine transaminase K (GTK), a key enzyme of the glutaminase II pathway, leads to the complete inhibition of pancreatic tumorigenesis in vivo unveiling GTK as a new metabolic target for cancer therapy. These results suggest that current trials using GLS1 inhibition as a therapeutic approach targeting glutamine metabolism in cancer should take into account the upregulation of other metabolic pathways that can lead to glutamate production; one such pathway is the glutaminase II pathway via GTK.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutaminase/genética , Liases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Transaminases/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Glutamina/genética , Glutamina/metabolismo , Humanos , Liases/antagonistas & inibidores , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Transaminases/antagonistas & inibidores
10.
Front Immunol ; 15: 1354128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558806

RESUMO

Importance: Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective: To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design: This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting: Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants: The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures: Fold changes of metabolites in AD vs healthy control plasma. Results: In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance: Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.


Assuntos
Dermatite Atópica , Humanos , Citocinas/metabolismo , Isoleucina , Prurido , Valina , Treonina
11.
Sci Rep ; 14(1): 17472, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39080299

RESUMO

Chronic pruritus of unknown origin (CPUO) is characterized by chronic itch for 6 weeks or greater without an identifiable primary cause. Studies are needed to investigate circulating blood biomarkers to elucidate disease pathogenesis. The objective of this study was to investigate changes in circulating blood metabolites in CPUO patients and to identify potential therapeutic targets. Our cross-sectional study collected plasma from 11 CPUO patients and 11 matched control patients for mass-spectrometry based metabolite data analysis. 15 metabolites differed significantly in the blood of CPUO patients compared to controls, including nine amino acids (isoleucine, L-tyrosine, threonine, DL-tryptophan, L-valine, methionine, glycine, lysine, and L-phenylalanine), four amino acid derivatives (creatinine, DL-carnitine, acetyl-L-carnitine, and indole-3-acrylic acid), and two aromatic and fatty acid derivatives (2-hydroxycinnamic acid and oleamide). These metabolites were also correlated with itch severity. Metabolic set enrichment analysis (MSEA) identified downregulation of several pathways in CPUO: phenylalanine, tyrosine, tryptophan biosynthesis; catecholamine biosynthesis; and glycine, serine, and threonine metabolism. Our study identified decreases in several circulating plasma metabolites in CPUO patients and downregulation of pathways related to catecholamine biosynthesis and tryptophan biosynthesis, providing insight into the pathogenesis of CPUO.


Assuntos
Biomarcadores , Metabolômica , Prurido , Humanos , Biomarcadores/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Prurido/sangue , Prurido/etiologia , Metabolômica/métodos , Adulto , Idoso , Doença Crônica , Estudos Transversais , Estudos de Casos e Controles , Metaboloma , Aminoácidos/sangue
12.
Aging Cell ; 23(4): e14102, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38481042

RESUMO

Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.


Assuntos
Cinurenina , Triptofano , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Longevidade , NAD/metabolismo , Drosophila/metabolismo
13.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703764

RESUMO

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Transcriptoma/genética , Masculino , Feminino , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica
14.
Adv Biol (Weinh) ; 7(2): e2200233, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36417583

RESUMO

Relapses negatively impact cancer patient survival due to the tumorigenesis ability of surviving cancer cells post-therapy. Efforts are needed to better understand and combat this problem. This study hypothesized that dead cell debris post-radiation therapy creates an advantageous microenvironment rich in metabolic materials promoting the growth of remaining live cancer cells. In this study, live cancer cells are co-cultured with dead cancer cells eradicated by UV radiation to mimic a post-therapy environment. Isotopic labeling metabolomics is used to investigate the metabolic behavior of cancer cells grown in a post-radiation-therapy environment. It is found that post-UV-eradicated dead cancer cells serve as nutritional sources of "off-the-shelf" and precursor metabolites for surviving cancer cells. The surviving cancer cells then take up these metabolites, integrate and upregulate multiple vital metabolic processes, thereby significantly increasing growth in vitro and probably in vivo beyond their intrinsic fast-growing characteristics. Importantly, this active metabolite uptake behavior is only observed in oncogenic but not in non-oncogenic cells, presenting opportunities for therapeutic approaches to interrupt the active uptake process of oncogenic cells without affecting normal cells. The process by which living cancer cells re-use vital metabolites released by dead cancer cells post-therapy is coined in this study as "metabolic recycling" of oncogenic cells.


Assuntos
Linfoma de Células B , Recidiva Local de Neoplasia , Humanos , Metabolômica , Transformação Celular Neoplásica/patologia , Proliferação de Células , Microambiente Tumoral
15.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786718

RESUMO

Knockout (KO) of the fatty acid-activation enzyme very long-chain acyl-CoA synthetase 3 (ACSVL3; SLC27A3) in U87MG glioblastoma cells reduced their malignant growth properties both in vitro and in xenografts. These U87-KO glioma cells grew at a slower rate, became adherence-dependent, and were less invasive than parental U87 cells. U87-KO cells produced fewer, slower-growing subcutaneous and intracranial tumors when implanted in NOD-SCID mice. Thus, depleting U87MG cells of ACSVL3 restored these cells to a phenotype more like that of normal astrocytes. To understand the mechanisms underlying these beneficial changes, we investigated several possibilities, including the effects of ACSVL3 depletion on carbohydrate metabolism. Proteomic and metabolomic profiling indicated that ACSVL3 KO produced changes in glucose and energy metabolism. Even though protein levels of glucose transporters GLUT1 and GLUT3 were reduced by KO, cellular uptake of labeled 2-deoxyglucose was unaffected. Glucose oxidation to CO2 was reduced nearly 7-fold by ACSVL3 depletion, and the cellular glucose level was 25% higher in KO cells. Glycolytic enzymes were upregulated by KO, but metabolic intermediates were essentially unchanged. Surprisingly, lactate production and the levels of lactate dehydrogenase isozymes LDHA and LDHB were elevated by ACSVL3 KO. The activity of the pentose phosphate pathway was found to be lower in KO cells. Citric acid cycle enzymes, electron transport chain complexes, and ATP synthase protein levels were all reduced by ACSVL3 depletion. Mitochondria were elongated in KO cells, but had a more punctate morphology in U87 cells. The mitochondrial potential was unaffected by lack of ACSVL3. We conclude that the beneficial effects of ACSVL3 depletion in human glioblastoma cells may result in part from alterations in diverse metabolic processes that are not directly related to role(s) of this enzyme in fatty acid and/or lipid metabolism. (Supported by NIH 5R01NS062043 and KKI institutional funds.).

16.
Chronic Obstr Pulm Dis ; 10(2): 159-169, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976551

RESUMO

Background: Polymorphisms and products of the cyclooxygenase (COX) pathway have been associated with the development of chronic obstructive pulmonary disease (COPD) and adverse outcomes. COX-produced prostaglandin E2 (PGE-2) may play a role in the inflammation observed in COPD, potentially through deleterious airway macrophage polarization. A better understanding of the role of PGE-2 in COPD morbidity may inform trials for therapeutics targeting the COX pathway or PGE-2. Methods: Urine and induced sputum were collected from former smokers with moderate-severe COPD. The major urinary metabolite of PGE-2 (PGE-M) was measured, and ELISA was performed on sputum supernatant for PGE-2 airway measurement. Airway macrophages underwent flow cytometry phenotyping (surface CD64, CD80, CD163, CD206, and intracellular IL-1ß, TGF-ß1). Health information was obtained the same day as the biologic sample collection. Exacerbations were collected at baseline and then monthly telephone calls. Results: Among 30 former smokers with COPD (mean±SD age 66.4±8.88 years and forced expiratory volume in 1 second [FEV1] 62.4±8.37 percent predicted), a 1 pg/mL increase in sputum PGE-2 was associated with higher odds of experiencing at least one exacerbation in the prior 12 months (odds ratio 3.3; 95% confidence interval: 1.3 to15.0), worse respiratory symptoms and health status. PGE-M was not associated with exacerbations or symptoms. Neither airway PGE-2 nor urinary PGE-M was uniformly associated with an M1 or M2 polarization. Conclusions: Elevated levels of sputum PGE-2, rather than systemic PGE-2, is associated with increased respiratory symptoms and history of exacerbation among individuals with COPD. Additional studies focused on mechanism of action are warranted.

17.
ACS Chem Biol ; 18(1): 151-165, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36626752

RESUMO

Altered cellular metabolism is a hallmark of cancer pathogenesis and progression; for example, a near-universal feature of cancer is increased metabolic flux through the hexosamine biosynthetic pathway (HBP). This pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a potent oncometabolite that drives multiple facets of cancer progression. In this study, we synthesized and evaluated peracetylated hexosamine analogs designed to reduce flux through the HBP. By screening a panel of analogs in pancreatic cancer and glioblastoma multiform (GBM) cells, we identified Ac4Glc2Bz─a benzyl-modified GlcNAc mimetic─as an antiproliferative cancer drug candidate that down-regulated oncogenic metabolites and reduced GBM cell motility at concentrations non-toxic to non-neoplastic cells. More specifically, the growth inhibitory effects of Ac4Glc2Bz were linked to reduced levels of UDP-GlcNAc and concomitant decreases in protein O-GlcNAc modification in both pancreatic cancer and GBM cells. Targeted metabolomics analysis in GBM cells showed that Ac4Glc2Bz disturbed glucose metabolism, amino acid pools, and nucleotide precursor biosynthesis, consistent with reduced proliferation and other anti-oncogenic properties of this analog. Furthermore, Ac4Glc2Bz reduced the invasion, migration, and stemness of GBM cells. Importantly, normal metabolic functions mediated by UDP-GlcNAc were not disrupted in non-neoplastic cells, including maintenance of endogenous levels of O-GlcNAcylation with no global disruption of N-glycan production. Finally, a pilot in vivo study showed that a potential therapeutic window exists where animals tolerated 5- to 10-fold higher levels of Ac4Glc2Bz than projected for in vivo efficacy. Together, these results establish GlcNAc analogs targeting the HBP through salvage mechanisms as a new therapeutic approach to safely normalize an important facet of aberrant glucose metabolism associated with cancer.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Animais , Vias Biossintéticas , Hexosaminas/metabolismo , Antineoplásicos/farmacologia , Glucose/metabolismo , Difosfato de Uridina/metabolismo , Acetilglucosamina/metabolismo , Neoplasias Pancreáticas
18.
Pulm Circ ; 13(1): e12205, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36873460

RESUMO

In pulmonary artery hypertension (PAH), emerging evidence suggests that metabolic abnormalities may be contributing to cellular dysfunction in PAH. Metabolic abnormalities such as glycolytic shift have been observed intracellularly in several cell types in PAH, including microvacular endothelial cells (MVECs). Concurrently, metabolomics of human PAH samples has also revealed a variety of metabolic abnormalities; however the relationship between the intracellular metabolic abnormalities and the serum metabolome in PAH remains under investigation. In this study, we utilize the sugen/hypoxia (SuHx) rodent model of PAH to examine the RV, LV and MVEC intracellular metabolome (using targeted metabolomics) in normoxic and SuHx rats. We additionally validate key findings from our metabolomics experiments with data obtained from cell culture of normoxic and SuHx MVECs, as well as metabolomics of human serum samples from two different PAH patient cohorts. Taken together, our data, spanning rat serum, human serum and primary isolated rat MVECs reveal that: (1) key classes of amino acids (specifically, branched chain amino acids-BCAA) are lower in the pre-capillary (i.e., RV) serum of SuHx rats (and humans); (2) intracellular amino acid levels (in particular BCAAs) are increased in SuHx-MVECs; (3) there may be secretion rather than utilization of amino acids across the pulmonary microvasculature in PAH and (4) an oxidized glutathione gradient is present across the pulmonary vasculature, suggesting a novel fate for increased glutamine uptake (i.e., as a source of glutathione). in MVECs in PAH. In summary, these data reveal new insight into the shifts in amino acid metabolism occurring across the pulmonary circulation in PAH.

19.
J Gerontol A Biol Sci Med Sci ; 78(10): 1740-1752, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37310873

RESUMO

Chronic activation of inflammatory pathways (CI) and mitochondrial dysfunction are independently linked to age-related functional decline and early mortality. Interleukin 6 (IL-6) is among the most consistently elevated chronic activation of inflammatory pathways markers, but whether IL-6 plays a causative role in this mitochondrial dysfunction and physical deterioration remains unclear. To characterize the role of IL-6 in age-related mitochondrial dysregulation and physical decline, we have developed an inducible human IL-6 (hIL-6) knock-in mouse (TetO-hIL-6mitoQC) that also contains a mitochondrial-quality control reporter. Six weeks of hIL-6 induction resulted in upregulation of proinflammatory markers, cell proliferation and metabolic pathways, and dysregulated energy utilization. Decreased grip strength, increased falls off the treadmill, and increased frailty index were also observed. Further characterization of skeletal muscles postinduction revealed an increase in mitophagy, downregulation of mitochondrial biogenesis genes, and an overall decrease in total mitochondrial numbers. This study highlights the contribution of IL-6 to mitochondrial dysregulation and supports a causal role of hIL-6 in physical decline and frailty.


Assuntos
Fragilidade , Interleucina-6 , Camundongos , Humanos , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Músculo Esquelético/metabolismo
20.
Cancer Cell ; 41(1): 139-163.e17, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36563681

RESUMO

Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Resultado do Tratamento , Prognóstico , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA