Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 198: 105758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225061

RESUMO

Trichothecium roseum is a type of fungus that causes pink rot in muskmelon after the melons are harvested. Pink rot leads to severe decay during storage and causes the production of toxins that can be harmful to human health. Sodium propylparaben (SPP, IUPAC name: sodium; 4-propoxycarbonylphenolate) is an antimicrobial preservative that can be used to treat the inedible parts of fruits in addition to food, medications, and packaging. In this study, the effectiveness of SPP in inhibiting T. roseum was tested, and the inhibition mechanism was investigated. The results show that SPP inhibited the growth and spore germination of T. roseum. The malondialdehyde (MDA) content, propidium iodide staining, alkaline phosphatase (AKP) activity, and calcofluor white (CFW) staining results show that SPP produced a disruption of the cell membrane and cell wall integrity of T. roseum. Scanning and transmission electron microscopy (SEM and TEM, respectively) results also indicate that SPP disrupted the cellular structure of T. roseum. Meanwhile, the large amounts of superoxide anion and hydrogen peroxide in T. roseum accumulated due to the effects of SPP on the activities of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, and decreased catalase. In addition, SPP caused a significant reduction in the incidence rate and disease degree of muskmelon pink rot in vivo. In conclusion, SPP appears to be effective against T. roseum via disruption of the cell membrane and wall. SPP could be used to manage melon pink rot after fruit harvesting because of its disease inhibition effect in vivo.


Assuntos
Antifúngicos , Hypocreales , Parabenos , Humanos , Antifúngicos/farmacologia , Frutas/microbiologia
2.
BMC Microbiol ; 23(1): 246, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660043

RESUMO

BACKGROUND: Zoonotic diseases pose a significant threat to public health. Chlamydia, as an intracellular pathogen, can colonize the intestinal tract of humans and animals, changing the gut microbiota. However, only a few studies have evaluated alterations in the gut microbiota of horses infected with Chlamydia. Therefore, this study aimed to investigate gut microbiota and serum biochemical indicators in horses with Chlamydial infection (IG) and healthy horses (HG). Fecal and blood samples were collected from 16 horses (IG: 10; HG: 6) before morning feeding for the determination of gut microbiota and serum biochemical parameters. RESULTS: The results showed that total globulin (GLB), alanine aminotransferase (ALT), and creatine kinase (CK) levels were significantly increased in IG compared with HG. Notably, the gut microbial diversity increased in IG compared with HG. Furthermore, Moraxellaceae and Akkermanisa abundance decreased in IG, while Streptococcus, Treponema, Prevotella, and Paraprevotella abundances (13 genera of bacterial species) increased. Compared with HG, carbohydrate metabolism increased in IG while amino acid metabolism decreased. In addition, the abundance of 18 genera of bacteria was associated with the level of five serum biochemical indicators. CONCLUSIONS: In summary, this study elucidated the influence of Chlamydia infection in horses on the gut microbiota, unraveling consequential alterations in its composition and metabolic profile. Therefore, this study improves the understanding of Chlamydia-induced intestinal infections.


Assuntos
Infecções por Chlamydia , Chlamydia , Microbioma Gastrointestinal , Humanos , Animais , Cavalos , Infecções por Chlamydia/veterinária , Zoonoses , Bacteroidetes
3.
Chemistry ; 29(58): e202301862, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37506171

RESUMO

There have been remarkable advances in the syntheses and applications of groups 13 and 14 homonuclear ethene analogues. However, successes are largely limited to aryl- and/or silyl-substituted species. Analogues bearing two or more heteroatoms are still scarce. In this work, the block-localized wavefunction (BLW) method at the density functional theory (DFT) level was employed to study dialumene and disilene bearing two amino substituents whose optimal geometries exhibit significantly stretched central M=M (M=Al or Si) double bonds compared with aryl- and/or silyl-substituted species. Computational analyses showed that the repulsion between the lone electron pairs of amino substituents and M=M π bond plays a critical role in the elongation of the M=M bonds. Evidently, replacing the substituent groups -NH2 with -BH2 can enhance the planarity and shorten the central double bonds due to the absence of lone pair electrons in BH2 .

4.
Chemistry ; 29(19): e202203817, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624078

RESUMO

Given the extraordinary versatility in chemical reactions and applications, boron compounds have gained increasing attentions in the past two decades. One of the remarkable advances is the unprecedented preparation of unsaturated boron species. Notably, Braunschweig et al. found that the cyclic (alkyl)(amino) carbenes (CAACs) stabilized diboron molecules (CAAC)2 B2 (SR)2 host unpaired electrons and exist in the 90°-twisted diradical form, while other analogues, such as N-heterocyclic carbenes (NHCs), stabilized diboron molecules prefer a conventional B=B double bond. Since previous studies recognized the differences in the steric effect between CAAC and NHC carbenes, here we focused on the role of thiol substituents in (CAAC)2 B2 (SR)2 by gradually localizing involved electrons. The co-planarity of the thiol groups and the consequent captodative effect were found to be the culprit for the 90°-twisted diradical form of (CAAC)2 B2 (SR)2 . Computational analyses identified two forces contributing to the π electron movements. One is the "push" effect of lone pairs on the sulfur atoms which boosts the π electron delocalization between the BB center and CAACs. The other is the π electron delocalization within each (CAAC)B(SR) fragment where the pull effect originates from the π electron withdrawal by CAACs. There are two such independent and orthogonal push-pull channels which function mainly in individual (CAAC)B(SR) fragments. This enhanced π push-pull effect in the triplet state facilitates the electronic excitation in (CAAC)2 B2 (SR)2 by reducing the singlet-triplet gap.

5.
Chemistry ; 29(28): e202300205, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36853090

RESUMO

To meet the requirements for industrial water splitting to generate hydrogen, it is urgent, but still quite challenging to develop highly active and stable electrocatalysts for large-current-density hydrogen evolution reaction (HER). Herein, Ru-incorporated NiSe2 (Ru-NiSe2 ) was designed and synthesized. The introduction of Ru results in the formation of hierarchically structured Ru-NiSe2 with large electrochemical active surface area, and well-modified electronic structure. As expected, the as-fabricated Ru-NiSe2 displays impressive HER activity in 1.0 M KOH, with a low overpotential of 180.8 mV to reach the current density of 1000 mA cm-2 . Ru-NiSe2 also presents outstanding long-term stability at high current densities, owing to its high intrinsic chemical stability, and strong catalyst-support interface. Notably, when performed at a certain current density of 1000 mA cm-2 , the overpotential increase after 90 h is only 13 mV. Such excellent HER performance of Ru-NiSe2 demonstrates its great potential for practical use in industrial water splitting.

6.
Biomacromolecules ; 24(2): 592-603, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36705942

RESUMO

Introducing vinyl groups onto the backbone of technical lignin provides an opportunity to create highly reactive renewable polymers suitable for radical polymerization. In this work, the chemical modification of softwood kraft lignin was pursued with etherification, followed by direct esterification with acrylic acid (AA). In the first step, phenolic hydroxyl and carboxylic acid groups were derivatized into aliphatic hydroxyl groups using ethylene carbonate and an alkaline catalyst. The lignin was subsequently fractionated using a downward precipitation method to recover lignin of defined molar mass and solubility. After recovery, the resulting material was then esterified with AA, resulting in lignin with vinyl functional groups. The first step resulted in approximately 90% of phenolic hydroxyl groups being converted into aliphatic hydroxyls, while the downward fractionation resulted in three samples of lignin with defined molar masses. For the esterification reaction, the weight ratio of reagents, reaction temperature, and reaction time were evaluated as factors that would influence the modification efficacy. 13C NMR spectroscopy analysis of lignin samples before and after esterification showed that the optimized reaction conditions could reach approximately 40% substitution of aliphatic hydroxyl groups. Both steps only used lignin and the modifying reagent (no solvent), with the possibility of recovery and reuse of the reagent by dilution and distillation. An additional second esterification step of the resulting lignin sample with acetic acid or propionic acid converted 90% of remaining hydroxyl groups into short-chain carbon aliphatic esters, making a hydrophobic material suitable for further copolymerization with synthetic hydrophobic monomers.


Assuntos
Ésteres , Lignina , Lignina/química , Ésteres/química , Acrilatos , Esterificação , Fenóis
7.
Inorg Chem ; 62(12): 5023-5031, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36898358

RESUMO

Urea oxidation reaction (UOR), with a low thermodynamic potential, offers great promise for replacing anodic oxygen evolution reaction of electrolysis systems such as water splitting, carbon dioxide reduction, etc., thus reducing the overall energy consumption. To promote the sluggish kinetics of UOR, highly efficient electrocatalysts are required, and Ni-based materials have been widely investigated. However, most of these reported Ni-based catalysts suffer from large overpotentials, as they generally undergo self-oxidation to form NiOOH species at high potentials, which act as catalytically active sites for UOR. Herein, Ni-doped MnO2 (Ni-MnO2) nanosheet arrays were successfully prepared on nickel foam. The as-fabricated Ni-MnO2 shows distinct UOR behavior with most of the previously reported Ni-based catalysts, as urea oxidation on Ni-MnO2 proceeds before the formation of NiOOH. Notably, a low potential of 1.388 V vs reversible hydrogen electrode was required to achieve a high current density of 100 mA cm-2 on Ni-MnO2. It is suggested that both Ni doping and nanosheet array configuration are responsible for the high UOR activities on Ni-MnO2. The introduction of Ni modifies the electronic structure of Mn atoms, and more Mn3+ species are generated in Ni-MnO2, contributing to its outstanding UOR performance.

8.
Phys Chem Chem Phys ; 26(1): 477-484, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078846

RESUMO

Halogen bond donor catalysts have been widely used in organic reactions because they are environmentally friendly, inexpensive and recyclable. The [4+2] cycloaddition reaction is a key reaction in organic synthesis because of its ease of use, fast speed, and wide range of applications. In this work, halogen bond catalysis in the [4+2] cycloaddition reaction between 2-alkenylindoles was investigated based on DFT calculations. There are two modes of I⋯π halogen bond catalysis: either on the ethenyl of 2-alkenylindole (mode A) or on the five-membered ring of 2-alkenylindole (mode B). Both modes involve two steps: the formation of carbon-carbon bonds and the formation of six-membered rings. Gibbs free energy barriers were determined to investigate the stereoselectivity of the endo pathway and exo pathway. For mode A, the exo products were more easily generated when the substituent R = H, and the N-H⋯π interaction promoted high endo selectivity in the case of the substituent R = Ph. For mode B, an increasing proportion of endo products can be obtained in the order of catalyst I2, IBr and ICl. The π⋯π interaction of the substituent R = Ph promotes the [4+2] cycloaddition reaction, which is consistent with the experimental observation that R = Ph has a higher yield than R = H. The study of different catalytic modes and stereoselectivity would provide new ideas for the further study of the [4+2] cycloaddition reaction.

9.
Ecotoxicol Environ Saf ; 249: 114356, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508799

RESUMO

Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.


Assuntos
Chumbo , Estresse Oxidativo , Complexo de Proteína do Fotossistema II , Secale , Poluentes do Solo , Triticale , Triticum , Ecossistema , Chumbo/toxicidade , Secale/efeitos dos fármacos , Secale/enzimologia , Triticale/efeitos dos fármacos , Triticale/enzimologia , Triticum/efeitos dos fármacos , Triticum/enzimologia , Poluentes do Solo/toxicidade
10.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675085

RESUMO

Photosynthetic capacity is usually affected by light intensity in the field. In this study, photosynthetic characteristics of four different Triticeae crops (wheat, triticale, barley, and highland barley) were investigated based on chlorophyll fluorescence and the level of photosynthetic proteins under high light. Compared with wheat, three cereals (triticale, barley, and highland barley) presented higher photochemical efficiency and heat dissipation under normal light and high light for 3 h, especially highland barley. In contrast, lower photoinhibition was observed in barley and highland barley relative to wheat and triticale. In addition, barley and highland barley showed a lower decline in D1 and higher increase in Lhcb6 than wheat and triticale under high light. Furthermore, compared with the control, the results obtained from PSII protein phosphorylation showed that the phosphorylation level of PSII reaction center proteins (D1 and D2) was higher in barley and highland barley than that of wheat and triticale. Therefore, we speculated that highland barley can effectively alleviate photodamages to photosynthetic apparatus by high photoprotective dissipation, strong phosphorylation of PSII reaction center proteins, and rapid PSII repair cycle under high light.


Assuntos
Clorofila , Hordeum , Clorofila/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Fotossíntese/fisiologia , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Hordeum/metabolismo
11.
Angew Chem Int Ed Engl ; 62(36): e202308436, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37449563

RESUMO

The practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of In from h-MAB Hf2 InB2 . The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.

12.
Phys Chem Chem Phys ; 24(48): 29940-29951, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468652

RESUMO

The main protease is regarded as an essential drug target for treating Coronavirus Disease 2019. In the present study, 13 marketed drugs were investigated to explore the possible binding mechanism, utilizing molecular docking, molecular dynamics simulation, and MM-PB(GB)SA binding energy calculations. Our results suggest that fusidic acid, polydatin, SEN-1269, AZD6482, and UNC-2327 have high binding affinities of more than 23 kcal mol-1. A descriptor was defined for the energetic occupancy of the subpocket, and it was found that S4 had a low occupancy of less than 10% on average. The molecular optimization of ADZ6482 via reinforcement learning algorithms was carried out to screen out three lead compounds, in which slight structural changes give more considerable binding energies and an occupancy of the S4 subpocket of up to 43%. The energetic occupancy could be a useful descriptor for evaluating the local binding affinity for drug design.


Assuntos
Proteases 3C de Coronavírus , Inibidores de Proteases , SARS-CoV-2 , Humanos , COVID-19 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores
13.
J Environ Sci (China) ; 112: 115-120, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34955194

RESUMO

Wastewater-based epidemiology (WBE) has emerged as an effective environmental surveillance tool in monitoring fecal-oral pathogen infections within a community. Congruently, SARS-CoV-2, the etiologic agent of COVID-19, has been demonstrated to infect the gastrointestinal tissues, and be shed in feces. In the present study, SARS-CoV-2 RNA was concentrated from wastewater, sludge, surface water, ground water, sediment, and soil samples of municipal and hospital wastewater systems and related environments in Wuhan during the COVID-19 middle and low risk periods, and the viral RNA copies quantified using reverse transcription quantitative polymerase chain reaction (RT-qPCR). From the findings of this study, during the middle risk period, one influent sample and three secondary effluents collected from waste water treatment plant 2, as well as two samples from Jinyintan Hospital wastewater system influent were SARS-CoV-2 RNA positive. One sludge sample collected from Guanggu Branch of Tongji Hospital, which was obtained during the low risk period, was also positive for SARS-CoV-2 RNA. These study findings demonstrate the significance of WBE in continuous surveillance of SARS-CoV-2 at the community level, even when the COVID-19 prevalence is low. Overall, this study can be used as an important reference for contingency management of wastewater treatment plants and COVID-19 prevention and control departments of Wuhan.


Assuntos
COVID-19 , Águas Residuárias , Monitoramento Ambiental , Humanos , RNA Viral , SARS-CoV-2
14.
Exp Physiol ; 106(10): 2148, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33876502

RESUMO

Retraction: Yu, W., Li, Q., Chen, T., Zhang, H., Cui, X. and Shen, K. (2021), Transcription activation of microRNA-25 by PEA3 augments progression of gastric cancer through suppressing SIK1. Exp Physiol. Accepted Author Manuscript. https://doi.org/10.1113/EP089254 The above article, published online in Experimental Physiology on April 20, 2021 in Wiley Online Library (https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP089254) has been retracted by agreement between the journal's Editor-in Chief Mike Tipton, the Authors and John Wiley & Sons Ltd. The authors requested withdrawal after an additional review of the data in the article showed inaccuracies in the data and its analysis.

15.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067160

RESUMO

Puccinia striiformis f. sp. tritici (Pst) is an important pathogen of wheat (Triticum aestivum L.) stripe rust, and the effector protein secreted by haustoria is a very important component involved in the pathogenic process. Although the candidate effector proteins secreted by Pst haustoria have been predicted to be abundant, few have been functionally validated. Our study confirmed that chitin and flg22 could be used as elicitors of the pathogenic-associated molecular pattern-triggered immune (PTI) reaction in wheat leaves and that TaPr-1-14 could be used as a marker gene to detect the PTI reaction. In addition, the experimental results were consistent in wheat protoplasts. A rapid and efficient method for screening and identifying the effector proteins of Pst was established by using the wheat protoplast transient expression system. Thirty-nine Pst haustorial effector genes were successfully cloned and screened for expression in the protoplast. We identified three haustorial effector proteins, PSEC2, PSEC17, and PSEC45, that may inhibit the response of wheat to PTI. These proteins are localized in the somatic cytoplasm and nucleus of wheat protoplasts and are highly expressed during the infection and parasitism of wheat.


Assuntos
Proteínas Fúngicas/metabolismo , Imunidade , Moléculas com Motivos Associados a Patógenos/metabolismo , Protoplastos/microbiologia , Puccinia/fisiologia , Triticum/imunologia , Triticum/microbiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Quitina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Imunidade/efeitos dos fármacos , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Protoplastos/efeitos dos fármacos , Puccinia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transcrição Gênica/efeitos dos fármacos , Triticum/efeitos dos fármacos , Triticum/genética
16.
Emerg Infect Dis ; 26(10): 2482-2484, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32620177

RESUMO

Public mental health response to coronavirus disease is essential. After reviewing systemic and local efforts in China, we found efficient coordination and human resources. We recommend better symptom assessment, monitoring of organizations, and basic needs protection. This recommendation can inform how other countries can overcome mental health challenges during this pandemic.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/psicologia , Transtornos Mentais/diagnóstico , Serviços de Saúde Mental/organização & administração , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/psicologia , Universidades , Betacoronavirus , COVID-19 , China/epidemiologia , Órgãos Governamentais , Hospitais , Linhas Diretas , Humanos , Transtornos Mentais/virologia , Organizações sem Fins Lucrativos , Saúde Pública , Alocação de Recursos , SARS-CoV-2 , Sociedades Médicas , Avaliação de Sintomas
17.
Chemistry ; 26(12): 2520, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31997407

RESUMO

Borylenes can bind and activate N2 . In the end-on bridging borylene-N2 complexes, the π orbitals of N2 dominate the σ donation to one of the borylenes whereas the perpendicular π* anti-bonding orbitals of N2 can accept back-donations from another borylene. Thus, there are two opposite and perpendicular push-pull channels which govern the activation of N2 and the BNNB bent geometry. More information can be found in the Full Paper by Y. Mo, et al. on page 2619. Invited for the cover of this issue is Huaiyu Zhang and co-workers. The image depicts the push-pull channels in dinitrogen activation by two borylenes. Read the full text of the article at 10.1002/chem.201904724.

18.
Chemistry ; 26(12): 2619-2625, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31805203

RESUMO

Recently, Braunschweig et al. found that borylene (CAAC)DurB, in which CAAC is a cyclic alkyl(amino) carbene and Dur refers to 2,3,5,6-tetramethylphenyl, can bind and activate N2 , and the resulting [(CAAC)DurB]2 N2 is of a bent BNNB core. The N2 ligand in transition metal complexes is generally linear, so herein, the bonding nature of both terminal end-on and end-on bridging borylene-N2 complexes is investigated with valence bond (VB) theory. In the terminal end-on (CAAC)HBN2 the bonding follows the mechanism in transition metals with a σ donation and a π back-donation, but in the end-on bridging borylene-N2 complex, the σ donation comes from the π orbitals of N2 , and thus, there are two opposite and perpendicular push-pull channels. It is the push-pull interaction that governs the enhanced activation of N2 and the BNNB bent geometry. It is expected that the substituents bonded to B can modulate the bent angle and the strength of the push-pull interaction. Indeed, (CAAC)FB exhibits enhanced catalytic capacity for the activation of N2 .

19.
Phys Chem Chem Phys ; 22(32): 18071-18077, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32760940

RESUMO

The small molecule clusters have received more and more attention due to their widespread applications in chemical insulators, explosives, semiconductors and the high energy density materials industry. The electron deficiency of group IIIA elements endows their clusters with interesting properties. In this work, the electronic structures of M3 (M = B, Al, Ga) have been investigated by means of a complete active space self-consistent field (CASSCF) method. The nature of the chemical bond has been analyzed using the quantum theory of atoms in molecules (QTAIM) and electron localization function (ELF) analyses. The following conclusions can be drawn: in M3 (M = B, Al, Ga) clusters, two π electrons are shared by three atoms forming a 3c-2e delocalization π bond. Going from B3 to Al3 to Ga3, more and more electrons move from the bond pair to the outside of the M atom, which leads to a gradual enhancement of the delocalization of σ electrons. Aromaticity and the adaptive natural density partitioning (AdNDP) analyses reveal the existence of the 3c-2e π bond and delocalization of σ electrons in the studied systems.

20.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059402

RESUMO

Salicylic acid (SA) is considered to play an important role in plant responses to environmental stresses. However, the detailed protective mechanisms in photosynthesis are still unclear. We therefore explored the protective roles of SA in photosystem II (PSII) in Arabidopsis thaliana under high light. The results demonstrated that 3 h of high light exposure resulted in a decline in photochemical efficiency and the dissipation of excess excitation energy. However, SA application significantly improved the photosynthetic capacity and the dissipation of excitation energy under high light. Western blot analysis revealed that SA application alleviated the decrease in the levels of D1 and D2 protein and increased the amount of Lhcb5 and PsbS protein under high light. Results from photoinhibition highlighted that SA application could accelerate the repair of D1 protein. Furthermore, the phosphorylated levels of D1 and D2 proteins were significantly increased under high light in the presence of SA. In addition, we found that SA application significantly alleviated the disassembly of PSII-LHCII super complexes and LHCII under high light for 3 h. Overall, our findings demonstrated that SA may efficiently alleviate photoinhibition and improve photoprotection by dissipating excess excitation energy, enhancing the phosphorylation of PSII reaction center proteins, and preventing the disassembly of PSII super complexes.


Assuntos
Arabidopsis/metabolismo , Luz/efeitos adversos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/efeitos da radiação , Substâncias Protetoras/farmacologia , Ácido Salicílico/farmacologia , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Ligação à Clorofila/metabolismo , Cloroplastos/ultraestrutura , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteína do Fotossistema I , Substâncias Protetoras/metabolismo , Proteínas Quinases/metabolismo , Ácido Salicílico/metabolismo , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA