Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Pediatr ; 24(1): 51, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229006

RESUMO

OBJECTIVE: The study aimed to explore the effectiveness of bedside lung ultrasound (LUS) combined with the PaO2/FiO2 (P/F) ratio in evaluating the outcomes of high-flow nasal cannula (HFNC) therapy in infants with severe pneumonia. METHODS: This retrospective study analyzed the clinical data of 150 infants diagnosed with severe pneumonia and treated with HFNC therapy at our hospital from January 2021 to December 2021. These patients were divided into two groups based on their treatment outcomes: the HFNC success group (n = 112) and the HFNC failure group (n = 38). LUS was utilized to evaluate the patients' lung conditions, and blood gas results were recorded for both groups upon admission and after 12 h of HFNC therapy. RESULTS: At admission, no significant differences were observed between the two groups in terms of age, gender, respiratory rate, partial pressure of oxygen, and partial pressure of carbon dioxide. However, the P/F ratios at admission and after 12 h of HFNC therapy were significantly lower in the HFNC failure group (193.08 ± 49.14, 228.63 ± 80.17, respectively) compared to the HFNC success group (248.51 ± 64.44, 288.93 ± 57.17, respectively) (p < 0.05). Likewise, LUS scores at admission and after 12 h were significantly higher in the failure group (18.42 ± 5.3, 18.03 ± 5.36, respectively) than in the success group (15.09 ± 4.66, 10.71 ± 3.78, respectively) (p < 0.05). Notably, in the success group, both P/F ratios and LUS scores showed significant improvement after 12 h of HFNC therapy, a trend not observed in the failure group. Multivariate regression analysis indicated that lower P/F ratios and higher LUS scores at admission and after 12 h were predictive of a greater risk of HFNC failure. ROC analysis demonstrated that an LUS score > 20.5 at admission predicted HFNC therapy failure with an AUC of 0.695, a sensitivity of 44.7%, and a specificity of 91.1%. A LUS score > 15.5 after 12 h of HFNC therapy had an AUC of 0.874, with 65.8% sensitivity and 89.3% specificity. An admission P/F ratio < 225.5 predicted HFNC therapy failure with an AUC of 0.739, 60.7% sensitivity, and 71.1% specificity, while a P/F ratio < 256.5 after 12 h of HFNC therapy had an AUC of 0.811, 74.1% sensitivity, and 73.7% specificity. CONCLUSION: Decreased LUS scores and increased P/F ratio demonstrate a strong correlation with successful HFNC treatment outcomes in infants with severe pneumonia. These findings may provide valuable support for clinicians in managing such cases.


Assuntos
Pneumonia , Insuficiência Respiratória , Lactente , Humanos , Cânula , Estudos Retrospectivos , Oxigenoterapia/métodos , Pulmão/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Pneumonia/terapia , Oxigênio , Insuficiência Respiratória/terapia
2.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615641

RESUMO

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Assuntos
DNA Mitocondrial , Hepatócitos , Estresse Oxidativo , Receptor Toll-Like 9 , Tricloroetileno , Animais , Camundongos , Hepatócitos/efeitos dos fármacos , Tricloroetileno/toxicidade , Receptor Toll-Like 9/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Células RAW 264.7 , Doença Hepática Induzida por Substâncias e Drogas , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
3.
Angew Chem Int Ed Engl ; : e202413276, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39132935

RESUMO

In the deep-ultraviolet (DUV) region, nonlinear optical (NLO) crystals must meet stringent requirements, including a large optical band gap and sufficient second harmonic generation (SHG) response. Typically, these criteria are fulfilled by borates, carbonates and nitrates containing π-conjugated groups. In contrast, sulfates and phosphates, with polarizabilities significantly smaller than those of π-conjugated groups, struggle to achieve similar performance. Here, we present the discovery of Mg2PO4Cl, a magnesium-based phosphate, identified from over 10,000 phosphates based on a polar-axial-symmetry screening strategy, which exhibits the highest SHG response (5.2×KH2PO4 (KDP)) with phase-matching ability among non-π-conjugated DUV transparent NLO crystals. This compound belongs to the Pna21 space group, with [PO4] units consistently aligned along the 21 screw axis and glide planes throughout its crystal structure. Theoretical calculations attribute its remarkable SHG effect to the orderly arrangement of heteroanionic [MgO5Cl] and [MgO4Cl2] polyhedra alongside isolated [PO4] tetrahedra, supported by Berry phase analysis. Furthermore, a crystallographic structure analysis of phosphates and sulfates with significant SHG effects validates the effectiveness of our screening strategy. These findings offer valuable insights into the origins of NLO effects in non-π-conjugated compounds from both a material design and structural chemistry perspective, inspiring future efforts to revitalize DUV phosphates.

4.
Toxicol Ind Health ; 39(9): 515-527, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37449946

RESUMO

Trichloroethylene (TCE) is a metal detergent commonly used in industry that can enter the human body through the respiratory tract and skin, causing occupational medicamentosa-like dermatitis due to TCE (OMDT) and multiple organ damage, including liver failure. However, the pathogenesis of liver injury remains unclear. Kupffer cells (KCs) are important tissue macrophages in the body because the polarization of KCs plays a crucial role in immune-mediated liver injury. However, the mechanism of KCs polarization in TCE-induced immune liver injury has not been thoroughly elucidated. In this study, we investigated the effect of TCE-induced KCs polarization on liver function and signal transduction pathways using the TCE sensitization model developed by our group. BALB/c mouse skin was exposed to TCE for sensitization, and an increase in the expression of M1 macrophage-specific markers (CD16/CD32, iNOS), M1 macrophage-specific cytokines IL-1ß, and IFN-γ, P-JAK-1 and P-STAT1 levels were also found to be dramatically increased. When using low doses of gadolinium trichloride (GdCl3), the expression of these proteins and mRNA was significantly reduced. This phenomenon indicates that GdCl3 blocks TCE-induced polarization of KCs and suggests that the IFN-γ/STAT1 signaling pathway may be involved in the polarization process of KCs. These findings clarify the relationship between the polarization of KCs and immune liver injury and highlight the importance of further study of immune-mediated liver injury in TCE-sensitized mice.


Assuntos
Tricloroetileno , Humanos , Animais , Camundongos , Tricloroetileno/toxicidade , Células de Kupffer/metabolismo , Fígado , Transdução de Sinais , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/farmacologia
5.
Mol Ther ; 29(12): 3436-3448, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111558

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal lung disease characterized by progressive and non-reversible abnormal matrix deposition in lung parenchyma. Myofibroblasts originating mainly from resident fibroblasts via fibroblast-to-myofibroblast transition (FMT) are the dominant collagen-producing cells in pulmonary fibrosis. N6-methyladenosine (m6A) modification has been implicated in various biological processes. However, the role of m6A modification in pulmonary fibrosis remains elusive. In this study, we reveal that m6A modification is upregulated in a bleomycin (BLM)-induced pulmonary fibrosis mouse model, FMT-derived myofibroblasts, and IPF patient lung samples. Lowering m6A levels through silencing methyltransferase-like 3 (METTL3) inhibits the FMT process in vitro and in vivo. Mechanistically, KCNH6 is involved in the m6A-regulated FMT process. m6A modification regulates the expression of KCNH6 by modulating its translation in a YTH-domain family 1 (YTHDF1)-dependent manner. Together, our study highlights the critical role of m6A modification in pulmonary fibrosis. Manipulation of m6A modification through targeting METTL3 may become a promising strategy for the treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Miofibroblastos , Animais , Bleomicina/efeitos adversos , Canais de Potássio Éter-A-Go-Go/efeitos adversos , Canais de Potássio Éter-A-Go-Go/metabolismo , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Pulmão/metabolismo , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Biossíntese de Proteínas
6.
Ecotoxicol Environ Saf ; 230: 113141, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34974362

RESUMO

We have previously shown trichloroethylene (TCE) induced immune liver injury, and TNF-α/TNFR1 pathway as a probably mechanism underlying the immune damage, but the pathogenic mechanism is still unclear. The study aims to investigate whether TNF-α and its receptors regulate Kupffer cell polarization and downstream inflammation signaling pathways during TCE sensitization, to clarify the mechanism of TCE-mediated immune liver injury. 6-8 weeks old SPF BALB/c female mice were used to establish a TCE sensitization model. We found that in the TCE sensitization positive group, liver injury was aggravated, Kupffer cells activated and polarized to M1 type. The expression of M1 Kupffer cell marker proteins CD11c and CD16/32 increased in the TCE positive group, so did TNF-α and TNFR1 in liver. The expression of P-IKK protein, PP65 protein and P-STAT3 protein increased in the TCE sensitization positive group, and the downstream inflammatory factors IL-1ß and IL-6 also increased in the TCE sensitization positive group. After using the TNFR1 inhibitor R7050, we found that M1 Kupffer cell polarization, TNF-α expression, signal pathway expression and inflammatory factors IL-1ß and IL-6 expression declined, and the liver damage relieved. Briefly, the use of R7050 to inhibit TNF-α/TNFR1 changing the polarization of liver M1 Kupffer cell, thereby inhibiting the activation of related downstream signaling pathways and reducing the secretion of inflammatory factors. TNF-α/TNFR1 regulates the polarization of M1 Kupffer cells inflammatory play an important role in liver immune damage.

7.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081159

RESUMO

Typhoons in summer and cold snaps during winter in Taiwan often cause huge aquaculture losses. Simultaneously, the lack of human resources is a problem. Therefore, we used wireless transmission technology with various sensors to transmit the temperature, pH value, dissolved oxygen, water level, and life expectancy of the sensor in the fish farm to the server. The integrated data are transmitted to mobile devices through the Internet of Things, enabling administrators to monitor the water quality in a fish farm through mobile devices. Because the current pH sensors cannot be submerged in the liquid for a long time for measurements, human resources and time are required to take the instrument to each fish farm for testing at a fixed time. Therefore, a robotic arm was developed to complete automatic measurement and maintenance actions. We designed this arm with a programmable logic controller, a single chip combined with a wireless transmission module, and an embedded system. This system is divided into control, measurement, server, and mobility. The intelligent measurement equipment designed in this study can work 24 h per day, which effectively reduces the losses caused by personnel, material resources, and data errors.


Assuntos
Pesqueiros , Qualidade da Água , Aquicultura , Arritmias Cardíacas , Humanos , Monitorização Fisiológica , Tecnologia sem Fio
8.
Nanotechnology ; 32(50)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34479214

RESUMO

The exploration of advanced anode materials through rational structure/phase design is the key to developing high-performance rechargeable batteries. Herein, tetraphosphorus tetraselenide (Se4P4) nanoparticles confined within porous carbon (named SeP@C) are developed for lithium-ion batteries. The designed SeP@C shows a set of structural/compositional advantages as lithium-ion battery anodes including high electrical conductivity, low ion diffusion barrier, and relieved lithiation stress. Consequently, the SeP@C electrode displays superior comprehensive lithium storage performance, e.g., high reversible capacity (640.8 mA h g-1at 0.1 A g-1), excellent cycling stability (500 cycles with respective capacity retention of over or nearly 100%), and good rate capability, representing a comparable lithium storage performance in reported phosphide-based anodes. More significantly, it shows excellent energy storage properties in lithium-ion full cells which can light up 85 red LEDs for over 3.2 h. This work offers an advanced electrode construction guidance of phosphorous-based anodes for the development of high-performance energy storage devices.

9.
Immunopharmacol Immunotoxicol ; 42(6): 545-555, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32811237

RESUMO

METHODS: 36 female BALB/c mice were selected and randomly divided the mice into four groups. We established a BALB/c mouse model of TCE sensitization and pretreatment with GdCl3 (40 mg/kg) by intraperitoneal injection during the during the 17th and 19th days. RESULTS: We found F4/80, the marker of Kupffer cell, was increased in TCE positive group. GdCl3 treatment successfully blocked the activation of Kupffer cell. TNF-α was increased significantly in liver of TCE sensitized mice and decreased significantly when low-dose GdCl3 was used. We found TNF receptor 1 (TNFR1) was increased significantly and GdCl3 treatment resumed the expression of TNFR1 to normal level, as well as the F4/80, TNF-α and TNFR1 mRNA. We also found both caspase-8 and caspase-3 increased in TCE positive group and decreased in TCE + GdCl3 positive group. The number of apoptotic cells in TCE sensitized mice increased by TUNEL staining, and GdCl3 treatment alleviated this increase. Some cells showed edema and inflammatory cell aggregation in liver of TCE positive group, while in the TCE + GdCl3 positive group, the cytoplasm became loose and vacuole-like degeneration occurred. CONCLUSION: Our study unveils cross-talk between Kupffer cell activation and TNFR1 which mediate apoptosis in liver of TCE sensitized mice.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Gadolínio/farmacologia , Células de Kupffer/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Feminino , Células de Kupffer/imunologia , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos BALB C , Transdução de Sinais , Tricloroetileno
10.
Zhongguo Zhong Yao Za Zhi ; 44(5): 875-879, 2019 Mar.
Artigo em Zh | MEDLINE | ID: mdl-30989843

RESUMO

At present,the function evaluation of health food containing Chinese materia medica is in lack of theoretical support of Chinese medicine,which can't reflect the function characteristics,dose-effect relationship and mechanism of functional food. What' s more,the evaluation technology of health food containing Chinese materia medica is relatively lagging behind and has been abolished now,which seriously restricts the development of health food containing Chinese materia medica industry. The proportion of health food containing Chinese materia medica with enhancing immune function is the highest among approved products,which is up to 30.33%. By collecting,analyzing and digging the current evaluation situation of enhancing immune function of health food containing Chinese materia medica,this paper has shown that there is no difference between health food containing Chinese materia medica evaluation and other functional food evaluation. What's more,there is a lack of characteristics of traditional Chinese medicine(TCM). The technological means including evaluation of immune active substances is under-developed and the immune cell evaluation needs to be refined and improved urgently,restricting the development of health food containing Chinese materia medica industry. Therefore,the evaluation of the enhanced immune function of health food containing Chinese materia medica should be guided by health-preserving theory in TCM,and based on the identification of TCM constitution for its claim of health function. With TCM theory and modern scientific technological means,a new evaluation model for immune function enhancement of health food containing Chinese materia medica is put forward to distinguish it from other functional food and traditional medicines. Formulation of the evaluation technology and technical specifications suitable for health food containing Chinese materia medica can fundamentally ensure the healthy,orderly,fast and sustainable development of health food containing Chinese materia medica industry.


Assuntos
Alimento Funcional , Materia Medica , Medicina Tradicional Chinesa , Humanos , Sistema Imunitário , Projetos de Pesquisa , Tecnologia
11.
Int J Toxicol ; 37(2): 155-163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29554824

RESUMO

The role of environmental factors in autoimmune diseases has been increasingly recognized. While major advance has been made in understanding biological pathogen-induced autoimmune diseases, chemically triggered autoimmunity is poorly understood. Trichloroethylene (TCE), a common environmental pollutant, has recently been shown to induce autoimmunity. This study explored whether TCE could cause imbalance of T helper (Th) cell subsets which would contribute to the pathogenesis of TCE-induced medicamentosa-like dermatitis. BALB/c mice were treated with TCE via drinking water at doses of 2.5 or 5.0 mg/mL for 2, 4, 8, 12, and 16 weeks. Trichloroethylene exposure caused time- and dose-dependent increase in Th1, Th2, and Th17 and decrease in regulatory cell (Treg) in the spleen at 2, 4, 8, 12, and 16 weeks, with greatest changes mainly at 4 weeks. These effects were mirrored by similar changes in the expression of their corresponding cytokines interferon-γ, interleukin 4 (IL-4), IL-17A, and IL-10. Mechanistically, these phenotypic changes were accounted for by alterations to their respective master transcription factors T-box expressed in T cells, GATA-binding protein 3, Retinoic acid-related orphan receptor ct (RORct), and forkhead box P3. Of interest, TCE treatment shifted the ratios of Th1/Th2 and Th17/Treg; specifically, TCE increased Th17/Treg. These findings provide the first evidence that TCE exposure significantly changes the Th1/Th2/Th17/Treg paradigm and their specific cytokines driven by altered master transcription factors. This may promote autoimmune reactions in the pathogenesis of TCE-induced skin sensitization and associated damage to other tissues.


Assuntos
Autoimunidade/efeitos dos fármacos , Solventes/toxicidade , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Tricloroetileno/toxicidade , Animais , Citocinas/imunologia , Feminino , Camundongos Endogâmicos BALB C , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia
12.
Toxicol Ind Health ; 33(11): 876-883, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29020883

RESUMO

Trichloroethylene (TCE) has been used for a variety of industrial and consumer cleaning purposes because of its ability to dissolve organic substances. The multisystem injuries include those of skin, liver, and kidney, which are defined as TCE hypersensitivity syndrome (THS). THS is a serious occupational health issue. However, the mechanism of immune dysfunction leading to organ injury is poorly understood. Many studies reveal that skin lesions and organ injury caused by TCE are consistent with type IV hypersensitivity, also called delayed hypersensitivity, mediated by T cells. However, many researchers found T cell-mediated type IV hypersensitivity could not account for the pathogenesis of THS fully. Humoral immunity, including immunoglobulins and complement activation, may also play a possible role in THS pathogenesis. This review will describe the history, current understanding, and future research directions of the mechanism of THS.


Assuntos
Síndrome de Hipersensibilidade a Medicamentos/etiologia , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Modelos Imunológicos , Solventes/toxicidade , Tricloroetileno/toxicidade , Animais , Ativação do Complemento/efeitos dos fármacos , Síndrome de Hipersensibilidade a Medicamentos/imunologia , Síndrome de Hipersensibilidade a Medicamentos/metabolismo , Exposição Ambiental/efeitos adversos , Humanos , Hipersensibilidade Tardia/induzido quimicamente , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Tardia/metabolismo , Exposição Ocupacional/efeitos adversos , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
J Appl Toxicol ; 36(2): 271-84, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26095957

RESUMO

We have previously shown complement activation as a possible mechanism for trichloroethylene (TCE) sensitization, leading to multi-organ damage including the kidneys. In particular, excessive deposition of C5 and C5b-9-the membrane attack complex, which can generate significant tissue damage, was observed in the kidney tissue after TCE sensitization. The present study tested the hypothesis that anaphylatoxin C5a binding to its receptor C5aR mediates renal injury in TCE-sensitized BALB/c mice. BALB/c mice were sensitized through skin challenge with TCE, with or without pretreatment by the C5aR antagonist W54011. Kidney histopathology and the renal functional test were performed to assess renal injury, and immunohistochemistry and fluorescent labeling were carried out to assess C5a and C5aR expressions. TCE sensitization up-regulated C5a and C5aR expressions in kidney tissue, generated inflammatory infiltration, renal tubule damage, glomerular hypercellularity and impaired renal function. Antagonist pretreatment blocked C5a binding to C5aR and attenuated TCE-induced tissue damage and renal dysfunction. TCE sensitization also caused the deposition of major pro-inflammatory cytokines IL-2, TNF-α and IFN-γ in the kidney tissue (P < 0.05); this was accompanied by increased expression of P-p38, P-ERK and P-JNK proteins (P < 0.05). Pretreatment with the C5aR antagonist attenuated the increase of expression of P-p38, P-ERK and P-JNK proteins (P < 0.05) and also consistently reduced the TCE sensitization-induced increase of IL-2, TNF-α and IFN-γ (P < 0.05). These data identify C5a binding to C5aR, MAP kinase activation, and inflammatory cytokine release as a novel mechanism for complement-mediated renal injury by sensitization with TCE or other environmental chemicals.


Assuntos
Complemento C5a/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Tricloroetileno/toxicidade , Animais , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Modelos Animais , Transdução de Sinais/efeitos dos fármacos
14.
Int J Toxicol ; 34(5): 442-53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26111540

RESUMO

Trichloroethylene (TCE) is a major occupational hazard and environmental contaminant that can cause multisystem disorders in the form of occupational medicamentosa-like dermatitis. Development of dermatitis involves several proinflammatory cytokines, but their role in TCE-mediated dermatitis has not been examined in a well-defined experimental model. In addition, few animal models of TCE sensitization are available, and the current guinea pig model has apparent limitations. This study aimed to establish a model of TCE-induced skin sensitization in BALB/c mice and to examine the role of several key inflammatory cytokines on TCE sensitization. The sensitization rate of dorsal painted group was 38.3%. Skin edema and erythema occurred in TCE-sensitized groups, as seen in 2,4-dinitrochlorobenzene (DNCB) positive control. Trichloroethylene sensitization-positive (dermatitis [+]) group exhibited increased thickness of epidermis, inflammatory cell infiltration, swelling, and necrosis in dermis and around hair follicle, but ear painted group did not show these histological changes. The concentrations of serum proinflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-2 were significantly increased in 24, 48, and 72 hours dermatitis [+] groups treated with TCE and peaked at 72 hours. Deposition of TNF-α, IFN-γ, and IL-2 into the skin tissue was also revealed by immunohistochemistry. We have established a new animal model of skin sensitization induced by repeated TCE stimulations, and we provide the first evidence that key proinflammatory cytokines including TNF-α, IFN-γ, and IL-2 play an important role in the process of TCE sensitization.


Assuntos
Dermatite de Contato/etiologia , Modelos Animais de Doenças , Tricloroetileno/toxicidade , Animais , Dermatite de Contato/sangue , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Feminino , Interferon gama/sangue , Interferon gama/imunologia , Interleucina-2/sangue , Interleucina-2/imunologia , Camundongos Endogâmicos BALB C , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia
15.
Toxicol Appl Pharmacol ; 277(3): 250-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24726524

RESUMO

Epithelial-mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100mg/kg body weight/day) injected daily for 3weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Dermatopatias/induzido quimicamente , Animais , Fibrose , Camundongos , Camundongos Endogâmicos BALB C , Esclerose , Dermatopatias/patologia , Organismos Livres de Patógenos Específicos
16.
Chem Sci ; 15(16): 5869-5896, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665521

RESUMO

With the continuous development of laser technology and the increasing demand for lasers of different frequencies in the infrared (IR) spectrum, research on infrared nonlinear optical (NLO) crystals has garnered growing attention. Currently, the three main commercially available types of borate materials each have their drawbacks, which limit their applications in various areas. Rare-earth (RE)-based chalcogenide compounds, characterized by the unique f-electron configuration, strong positive charges, and high coordination numbers of RE cations, often exhibit distinctive optical responses. In the field of IR-NLO crystals, they have a research history spanning several decades, with increasing interest. However, there is currently no comprehensive review summarizing and analyzing these promising compounds. In this review, we categorize 85 representative examples out of more than 400 non-centrosymmetric (NCS) compounds into four classes based on the connection of different asymmetric building motifs: (1) RE-based chalcogenides containing tetrahedral motifs; (2) RE-based chalcogenides containing lone-pair-electron motifs; (3) RE-based chalcogenides containing [BS3] and [P2Q6] motifs; and (4) RE-based chalcohalides and oxychalcogenides. We provide detailed discussions on their synthesis methods, structures, optical properties, and structure-performance relationships. Finally, we present several favorable suggestions to further explore RE-based chalcogenide compounds. These suggestions aim to approach these compounds from a new perspective in the field of structural chemistry and potentially uncover hidden treasures within the extensive accumulation of previous research.

17.
Biomed Environ Sci ; 37(8): 850-864, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39198250

RESUMO

Objective: Microcystin-leucine-arginine (MC-LR) exposure induces lipid metabolism disorders in the liver. Secreted frizzled-related protein 5 (SFRP5) is a natural antagonist of winglesstype MMTV integration site family, member 5A (Wnt5a) and an anti-inflammatory adipocytokine. In this study, we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5, which has anti-inflammatory effects, can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase (JNK) pathway. Methods: We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders. Subsequently, mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR, and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed. Results: MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner. SFRP5 overexpression in AML12 cells suppressed MC-LR-induced inflammation. Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK. Conclusion: MC-LR can induce lipid metabolism disorders in mice, and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.


Assuntos
Microcistinas , Proteína Wnt-5a , Animais , Proteína Wnt-5a/metabolismo , Proteína Wnt-5a/genética , Microcistinas/toxicidade , Camundongos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Transtornos do Metabolismo dos Lipídeos/induzido quimicamente , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/genética , Toxinas Marinhas , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética
18.
ACS Appl Mater Interfaces ; 16(39): 52682-52691, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39307970

RESUMO

In recent years, rare-earth-based chalcogenides have gained attention promising materials in the field of infrared nonlinear optical (IR-NLO) applications owing to their exceptional physicochemical properties. However, they frequently encounter challenges such as adverse two-photon absorption and low laser-induced damage thresholds (LIDTs) caused by narrow optical band gaps (Eg), which limit their practical utility. In this study, we started with the centrosymmetric (CS) parent compound EuGa2S4 to develop two new noncentrosymmetric (NCS) Eu-based chalcogenides, namely, EuZnSiS4 and EuCdSiS4, employing a rational cross-substitution strategy. Despite having identical stoichiometry, both compounds crystallize in distinct NCS orthorhombic space groups [Fdd2 (no. 43) vs Ama2 (no. 40)], as confirmed by single-crystal structure analysis. Their crystal structures feature highly distorted tetrahedral motifs interconnected via corner-sharing, forming unique two-dimensional layers that host Eu2+ cations. Furthermore, both compounds exhibit robust phase-matching second-harmonic generation (SHG) intensities of 1.5 × AgGaS2 for EuZnSiS4 and 2.8 × AgGaS2 for EuCdSiS4 under 2050 nm excitation. They also demonstrate high LIDTs (approximately 14-17 × AgGaS2), wide Eg (>2.5 eV), and transparency windows extending up to 18.2 µm. Particularly noteworthy, EuCdSiS4 stands out as a pioneering example in the Eu-based IR-NLO system for successfully combining a broad Eg (>2.56 eV, equivalent to that of AgGaS2) with a significant SHG effect (>1.0 × AgGaS2) simultaneously. Structural analyses and theoretical insights underscore that the reasonable combination of asymmetric functional units plays a pivotal role in driving the CS-to-NCS structural transformation and enhancing the NLO and linear optical properties of these Eu-based chalcogenides. This study presents a promising chemical pathway for advancing rare-earth-based functional materials and suggests exciting opportunities for their future applications in IR-NLO technologies.

19.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525008

RESUMO

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Assuntos
Proteína HMGB1 , Melanoma , Humanos , Camundongos , Animais , Interleucina-12 , Linfócitos T CD8-Positivos , Melanoma/terapia , Melanoma/metabolismo , Proteína HMGB1/metabolismo , Morte Celular Imunogênica , Camundongos Endogâmicos C57BL , Proliferação de Células , Linfócitos T CD4-Positivos , Trifosfato de Adenosina/metabolismo
20.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383737

RESUMO

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Assuntos
Adenina , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Adenina/análogos & derivados , Autofagia/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno CD47/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA