Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(6): 2176-2200, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345432

RESUMO

Phosphorus is indispensable in agricultural production. An increasing food supply requires more efficient use of phosphate due to limited phosphate resources. However, how crops regulate phosphate efficiency remains largely unknown. Here, we identified a major quantitative trait locus, qPE19, that controls 7 low-phosphate (LP)-related traits in soybean (Glycine max) through linkage mapping and genome-wide association studies. We identified the gene responsible for qPE19 as GLYCEROPHOSPHORYL DIESTER PHOSPHODIESTERASE2 (GmGDPD2), and haplotype 5 represents the optimal allele favoring LP tolerance. Overexpression of GmGDPD2 significantly affects hormone signaling and improves root architecture, phosphate efficiency and yield-related traits; conversely, CRISPR/Cas9-edited plants show decreases in these traits. GmMyb73 negatively regulates GmGDPD2 by directly binding to its promoter; thus, GmMyb73 negatively regulates LP tolerance. GmGDPD2 physically interacts with GA 2-oxidase 1 (GmGA2ox1) in the plasma membrane, and overexpressing GmGA2ox1 enhances LP-associated traits, similar to GmGDPD2 overexpression. Analysis of double mutants for GmGDPD2 and GmGA2ox1 demonstrated that GmGDPD2 regulates LP tolerance likely by influencing auxin and gibberellin dose-associated cell division in the root. These results reveal a regulatory module that plays a major role in regulating LP tolerance in soybeans and is expected to be utilized to develop phosphate-efficient varieties to enhance soybean production, particularly in phosphate-deficient soils.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Fosfatos , Proteínas de Plantas , Glycine max/genética , Glycine max/metabolismo , Fosfatos/metabolismo , Fosfatos/deficiência , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Locos de Características Quantitativas/genética , Plantas Geneticamente Modificadas , Estudo de Associação Genômica Ampla
2.
Nature ; 577(7790): 416-420, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875850

RESUMO

Humoral immune responses to immunization and infection and susceptibilities to antibody-mediated autoimmunity are generally lower in males1-3. However, the mechanisms underlying such sexual dimorphism are not well understood. Here we show that there are intrinsic differences between the B cells that produce germinal centres in male and female mice. We find that antigen-activated male B cells do not position themselves as efficiently as female B cells in the centre of follicles in secondary lymphoid organs, in which germinal centres normally develop. Moreover, GPR174-an X-chromosome-encoded G-protein-coupled receptor-suppresses the formation of germinal centres in male, but not female, mice. This effect is intrinsic to B cells, and correlates with the GPR174-enhanced positioning of B cells towards the T-cell-B-cell border of follicles, and the distraction of male, but not female, B cells from S1PR2-driven follicle-centre localization. Biochemical fractionation of conditioned media that induce B-cell migration in a GPR174-dependent manner identifies CCL21 as a GPR174 ligand. In response to CCL21, GPR174 triggers a calcium flux and preferentially induces the migration of male B cells; GPR174 also becomes associated with more Gαi protein in male than in female B cells. Male B cells from orchidectomized mice exhibit impaired GPR174-mediated migration to CCL21, and testosterone treatment rescues this defect. Female B cells from testosterone-treated mice exhibit male-like GPR174-Gαi association and GPR174-mediated migration. Deleting GPR174 from male B cells causes more efficient positioning towards the follicular centre, the formation of more germinal centres and an increased susceptibility to B-cell-dependent experimental autoimmune encephalomyelitis. By identifying GPR174 as a receptor for CCL21 and demonstrating its sex-dependent control of B-cell positioning and participation in germinal centres, we have revealed a mechanism by which B-cell physiology is fine-tuned to impart sexual dimorphism to humoral immunity.


Assuntos
Quimiocina CCL21/imunologia , Imunidade Humoral , Receptores Acoplados a Proteínas G/imunologia , Caracteres Sexuais , Animais , Linfócitos B/imunologia , Movimento Celular , Células Cultivadas , Quimiocina CCL21/genética , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/genética
3.
Proc Natl Acad Sci U S A ; 120(46): e2310883120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37934818

RESUMO

Development of single-component organic phosphor attracts increasing interest due to its wide applications in optoelectronic technologies. Theoretically, activating efficient intersystem crossing (ISC) via 1(π, π*) to 3(π, π*) transitions, rather than 1(n, π*) → 3(π, π*) transitions, is an alternative access to purely organic phosphors but remains challenging. Herein, we designed and successfully synthesized the sila-8-membered ring fused biaryl benzoskeleton by transition metal catalysis, which served as a new organic phosphor with efficient 1(π, π*) to 3(π, π*) ISC. We first found that such a compound exhibits a record-long phosphorescence lifetime of 6.5 s at low temperature for single-component organic systems. Then, we developed two strategies to tune their decay channels to evolve such nonemissive molecules into bright phosphors with elongated lifetimes at room temperature: 1) Physic-based design, where quantitative analyses of electron-phonon coupling led us to reveal and hinder the major nonradiative channels, thus lighted up room temperature phosphorescence (RTP) with a lifetime of 480 ms at 298 K; 2) chemical geometry-driven molecular engineering, where a geometry-based descriptor ΔΘT1-S0/ΘS0 was developed for rational screening RTP candidates and further improved the RTP lifetime to 794 ms. This study clearly shows the power of interdiscipline among synthetic methodology, physics-based rational design, and computational modeling, which represents a paradigm for the development of an organic emitter.

4.
J Neurosci ; 43(25): 4559-4579, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37225434

RESUMO

Previous studies have shown the essential roles of O-GlcNAc transferase (Ogt) and O-GlcNAcylation in neuronal development, function and neurologic diseases. However, the function of Ogt and O-GlcNAcylation in the adult cerebellum has not been well elucidated. Here, we have found that cerebellum has the highest level of O-GlcNAcylation relative to cortex and hippocampus of adult male mice. Specific deletion of Ogt in granule neuron precursors (GNPs) induces abnormal morphology and decreased size of the cerebellum in adult male Ogt deficient [conditional knock-out (cKO)] mice. Adult male cKO mice show the reduced density and aberrant distribution of cerebellar granule cells (CGCs), the disrupted arrangement of Bergman glia (BG) and Purkinje cells. In addition, adult male cKO mice exhibit aberrant synaptic connection, impaired motor coordination, and learning and memory abilities. Mechanistically, we have identified G-protein subunit α12 (Gα12) is modified by Ogt-mediated O-GlcNAcylation. O-GlcNAcylation of Gα12 facilitates its binding to Rho guanine nucleotide exchange factor 12 (Arhgef12) and consequently activates RhoA/ROCK signaling. RhoA/ROCK pathway activator LPA can rescue the developmental deficits of Ogt deficient CGCs. Therefore, our study has revealed the critical function and related mechanisms of Ogt and O-GlcNAcylation in the cerebellum of adult male mice.SIGNIFICANCE STATEMENT Cerebellar function are regulated by diverse mechanisms. To unveil novel mechanisms is critical for understanding the cerebellar function and the clinical therapy of cerebellum-related diseases. In the present study, we have shown that O-GlcNAc transferase gene (Ogt) deletion induces abnormal cerebellar morphology, synaptic connection, and behavioral deficits of adult male mice. Mechanistically, Ogt catalyzes O-GlcNAcylation of Gα12, which promotes the binding to Arhgef12, and regulates RhoA/ROCK signaling pathway. Our study has uncovered the important roles of Ogt and O-GlcNAcylation in regulating cerebellar function and cerebellum-related behavior. Our results suggest that Ogt and O-GlcNAcylation could be potential targets for some cerebellum-related diseases.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Transdução de Sinais , Camundongos , Masculino , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , N-Acetilglucosaminiltransferases/genética , Camundongos Knockout
5.
J Am Chem Soc ; 146(7): 4727-4740, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330247

RESUMO

Cooperative bimetallic catalysis to access novel reactivities is a powerful strategy for reaction development in transition-metal-catalyzed chemistry. Particularly, elucidation of the evolution of two transition-metal catalysts and understanding their roles in dual catalysis are among the most fundamental goals for bimetallic catalysis. Herein, a novel three-component reaction of a terminal alkyne, a diazo ester, and an allylic carbonate was successfully developed via cooperative Cu/Rh catalysis with Xantphos as the ligand, providing a highly efficient strategy to access 1,5-enynes with an all-carbon quaternary center that can be used as immediate synthetic precursors for complex cyclic molecules. Notably, a Meyer-Schuster rearrangement was involved in the reactions using propargylic alcohols, resulting in an unprecedented acylation-allylation of carbenes. Mechanistic studies suggested that in the course of the reaction Cu(I) species might aggregate to some types of Cu clusters and nanoparticles (NPs), while the Rh(II)2 precursor can dissociate to mono-Rh species, wherein Cu NPs are proposed to be responsible for the alkynylation of carbenes and work in cooperation with Xantphos-coordinated dirhodium(II) or Rh(I)-catalyzed allylic alkylation.

6.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660868

RESUMO

We investigated the role of telomerase and telomere repeat-binding factor 2 (TRF2 or TERF2) in T-cell dysfunction in chronic viral infection. We found that the expression and activity of telomerase in CD4+ T (CD4T) cells from patients with hepatitis C virus (HCV) infections or people living with HIV (PLWH) were intact, but TRF2 expression was significantly inhibited at the post-transcriptional level, suggesting that TRF2 inhibition is responsible for the CD4T cell dysfunction observed during chronic viral infection. Silencing TRF2 expression in CD4T cells derived from healthy subjects induced telomeric DNA damage and CD4T cell dysfunction without affecting telomerase activity or translocation - similar to what we observed in CD4T cells from HCV patients and PLWH. These findings indicate that premature T-cell aging and dysfunction during chronic HCV or HIV infection are primarily caused by chronic immune stimulation and T-cell overactivation and/or proliferation that induce telomeric DNA damage due to TRF2 inhibition, rather than telomerase disruption. This study suggests that restoring TRF2 presents a novel approach to prevent telomeric DNA damage and premature T-cell aging, thus rejuvenating T-cell functions during chronic viral infection.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Telomerase , Proteína 2 de Ligação a Repetições Teloméricas , Linfócitos T CD4-Positivos/imunologia , Dano ao DNA , Infecções por HIV/genética , Infecções por HIV/imunologia , Hepacivirus , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Humanos , Telomerase/genética , Telomerase/metabolismo , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
7.
Nat Mater ; 22(4): 434-441, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36536142

RESUMO

Lightweight design strategies and advanced energy applications call for high-strength Al alloys that can serve in the 300‒400 °C temperature range. However, the present commercial high-strength Al alloys are limited to low-temperature applications of less than ~150 °C, because it is challenging to achieve coherent nanoprecipitates with both high thermal stability (preferentially associated with slow-diffusing solutes) and large volume fraction (mostly derived from high-solubility and fast-diffusing solutes). Here we demonstrate an interstitial solute stabilizing strategy to produce high-density, highly stable coherent nanoprecipitates (termed the V phase) in Sc-added Al-Cu-Mg-Ag alloys, enabling the Al alloys to reach an unprecedented creep resistance as well as exceptional tensile strength (~100 MPa) at 400 °C. The formation of the V phase, assembling slow-diffusing Sc and fast-diffusing Cu atoms, is triggered by coherent ledge-aided in situ phase transformation, with diffusion-dominated Sc uptake and self-organization into the interstitial ordering of early-precipitated Ω phase. We envisage that the ledge-mediated interaction between slow- and fast-diffusing atoms may pave the way for the stabilization of coherent nanoprecipitates towards advanced 400 °C-level light alloys, which could be readily adapted to large-scale industrial production.

8.
New Phytol ; 241(1): 461-470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858964

RESUMO

Seed dispersal mechanisms play a crucial role in driving evolutionary changes in seed and fruit traits. While previous studies have primarily focussed on the mean or maximum values of these traits, there is also significant intraspecific variation in them. Therefore, it is pertinent to investigate whether dispersal mechanisms can explain intraspecific variations in these traits. Taking seed size as a case study, we compiled a global dataset comprising 3424 records of intraspecific variation in seed size (IVSS), belonging to 691 plant species and 131 families. We provided the first comprehensive quantification of dispersal mechanism effects on IVSS. Biotic-dispersed species exhibited a larger IVSS than abiotic-dispersed species. Synzoochory species had a larger IVSS than endozoochory, epizoochory, and myrmecochory species. Vertebrate-dispersed species exhibited a larger IVSS than invertebrate-dispersed species, and species dispersed by birds exhibited a larger IVSS than mammal-dispersed species. Additionally, a clear negative correlation was detected between IVSS and disperser body mass. Our results prove that the IVSS is associated with the seed dispersal mechanism. This study advances our understanding of the dispersal mechanisms' crucial role in seed size evolution, encompassing not only the mean value but also the variation.


Assuntos
Dispersão de Sementes , Humanos , Animais , Sementes , Frutas , Aves , Plantas , Mamíferos
9.
Plant Physiol ; 193(1): 792-808, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300539

RESUMO

The apoplast of plant leaves, the intercellular space between mesophyll cells, is normally largely filled with air with a minimal amount of liquid water in it, which is essential for key physiological processes such as gas exchange to occur. Phytopathogens exploit virulence factors to induce a water-rich environment, or "water-soaked" area, in the apoplast of the infected leaf tissue to promote disease. We propose that plants evolved a "water soaking" pathway, which normally keeps a nonflooded leaf apoplast for plant growth but is disturbed by microbial pathogens to facilitate infection. Investigation of the "water soaking" pathway and leaf water control mechanisms is a fundamental, yet previously overlooked, aspect of plant physiology. To identify key components in the "water soaking" pathway, we performed a genetic screen to isolate Arabidopsis (Arabidopsis thaliana) severe water soaking (sws) mutants that show liquid water overaccumulation in the leaf under high air humidity, a condition required for visible water soaking. Here, we report the sws1 mutant, which displays rapid water soaking upon high humidity treatment due to a loss-of-function mutation in CURLY LEAF (CLF), encoding a histone methyltransferase in the POLYCOMB REPRESSIVE COMPLEX 2 (PRC2). We found that the sws1 (clf) mutant exhibits enhanced abscisic acid (ABA) levels and stomatal closure, which are indispensable for its water soaking phenotype and mediated by CLF's epigenetic regulation of a group of ABA-associated NAM, ATAF, and CUC (NAC) transcription factor genes, NAC019/055/072. The clf mutant showed weakened immunity, which likely also contributes to the water soaking phenotype. In addition, the clf plant supports a substantially higher level of Pseudomonas syringae pathogen-induced water soaking and bacterial multiplication, in an ABA pathway and NAC019/055/072-dependent manner. Collectively, our study sheds light on an important question in plant biology and demonstrates CLF as a key modulator of leaf liquid water status via epigenetic regulation of the ABA pathway and stomatal movement.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Água/metabolismo , Epigênese Genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Proteínas de Homeodomínio/genética
10.
Plant Physiol ; 192(2): 1099-1114, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36932694

RESUMO

Soybean (Glycine max) is a major grain and oil crop worldwide, but low phosphorus (LP) in soil severely limits the development of soybean production. Dissecting the regulatory mechanism of the phosphorus (P) response is crucial for improving the P use efficiency of soybean. Here, we identified a transcription factor, GmERF1 (ethylene response factor 1), that is mainly expressed in soybean root and localized in the nucleus. Its expression is induced by LP stress and differs substantially in extreme genotypes. The genomic sequences of 559 soybean accessions suggested that the allelic variation of GmERF1 has undergone artificial selection, and its haplotype is significantly related to LP tolerance. GmERF1 knockout or RNA interference resulted in significant increases in root and P uptake efficiency traits, while the overexpression of GmERF1 produced an LP-sensitive phenotype and affected the expression of 6 LP stress-related genes. In addition, GmERF1 directly interacted with GmWRKY6 to inhibit transcription of GmPT5 (phosphate transporter 5), GmPT7, and GmPT8, which affects plant P uptake and use efficiency under LP stress. Taken together, our results show that GmERF1 can affect root development by regulating hormone levels, thus promoting P absorption in soybean, and provide a better understanding of the role of GmERF1 in soybean P signal transduction. The favorable haplotypes from wild soybean will be conducive to the molecular breeding of high P use efficiency in soybean.


Assuntos
Glycine max , Fatores de Transcrição , Glycine max/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fósforo/metabolismo , Genótipo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
11.
Cancer Cell Int ; 24(1): 192, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822322

RESUMO

BACKGROUND: Immunotherapy combined with molecular targeted therapy is increasingly popular in patients with advanced hepatocellular carcinoma (HCC). However, immune-related adverse events(irAEs) brought on by immunotherapy increase the likelihood of side effects, thus it is important to look into ways to address this issue. METHODS: Different metabolite patterns were established by analyzing metabolomics data in liver tissue samples from 10 patients(divided into severe and mild liver injury) before and after immuno-targeted therapy. After establishing a subcutaneous tumor model of HCC, the mice were divided into PBS group, ascorbic acid(AA) group, and anti-PD1 + tyrosine kinase inhibitor (TKI) group, anti-PD1 + TKI + AA group. Liver tissue were stained with hematoxylin-eosin staining(HE) and the content of aspartate transaminase (AST) and alanine transaminase(ALT) in blood were determined. The mechanism was confirmed by western blotting, mass cytometry, and other techniques. RESULTS: Through metabolomics analysis, AA was significantly reduced in the sample of patients with severe liver injury caused by immuno-targeted therapy compared to patients with mild liver injury. The addition of AA in vivo experiments demonstrated a reduction in liver injury in mice. In the liver tissues of the anti-PD1 + TKI + AA group, the protein expressions of SLC7A11,GPX4 and the level of glutathione(GSH) were found to be higher compared to the anti-PD1 + TKI group. Mass cytometry analysis revealed a significant increase in the CD11b+CD44+ PD-L1+ cell population in the AA group when compared to the PBS group. CONCLUSIONS: AA could reduce liver injury by preventing hepatocyte SLC7A11/GPX4 ferroptosis and improve the immunotherapy effect of anti-PD1 by boosting CD11b+CD44+PD-L1+cell population in HCC.

12.
Theor Appl Genet ; 137(5): 96, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589730

RESUMO

KEY MESSAGE: A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively. Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Glycine max/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fotossíntese/genética , Clorofila/metabolismo
13.
PLoS Comput Biol ; 19(5): e1011100, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37186644

RESUMO

Non-ribosomal peptide synthetase (NRPS) is a diverse family of biosynthetic enzymes for the assembly of bioactive peptides. Despite advances in microbial sequencing, the lack of a consistent standard for annotating NRPS domains and modules has made data-driven discoveries challenging. To address this, we introduced a standardized architecture for NRPS, by using known conserved motifs to partition typical domains. This motif-and-intermotif standardization allowed for systematic evaluations of sequence properties from a large number of NRPS pathways, resulting in the most comprehensive cross-kingdom C domain subtype classifications to date, as well as the discovery and experimental validation of novel conserved motifs with functional significance. Furthermore, our coevolution analysis revealed important barriers associated with re-engineering NRPSs and uncovered the entanglement between phylogeny and substrate specificity in NRPS sequences. Our findings provide a comprehensive and statistically insightful analysis of NRPS sequences, opening avenues for future data-driven discoveries.


Assuntos
Peptídeo Sintases , Peptídeos , Peptídeos/química , Peptídeo Sintases/genética , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo
14.
J Fluoresc ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717650

RESUMO

Due to the unique chemical and biomedical properties of carbon dots (CDs), they have increasingly obtained the attention in many research fields, for example, bioimaging, fluorescence sensing, and drug delivery, etc. Recently, it was found that, under light excitation, CDs can also be exploited as a novel photosensitizer to prepare reactive oxygen species (ROS), which expand their applications in the field of photodynamic therapy for cancer treatment. Nevertheless, the high cost and complex fabrication approach of CDs significantly limit their applications. To address this issue, bottom-up routes usually utilize sustainable and inexpensive carbon precursor as starting materials, employed N,N-dimethylformamide (DMF) or ethanol as an environmental-friendly solvent. Bottom-up approach was energy efficient, and the purification process was relatively simple by dialysis. Therefore, carbon dots (CDs) were facilely fabricated in a one-pot solvothermal process using 1-aminoanthraquinone as a precursor, and their application as photosensitizers for in vitro antitumor cells, especially photodynamic therapy (PDT) was established. Then the photophysical and nanoscale dimensions properties of the fabricated CDs were characterized via TEM, UV-visible, fluorescence, and FT-IR spectroscopy. The synthesized N-doped CDs can easily dissolve in water, possess very low biotoxicity, yellow-light emission (maximum peak at 587 nm). More importantly, PDT studies demonstrated that the obtained CDs possess a high singlet oxygen yield of 35%, and exhibit significant phototoxicity to cancer cells upon 635 nm laser irradiation. These studies highlight that N-doped CDs can be facilely synthesized from only one precursor, and are a potentially novel theranostic agent for in vivo PDT.

15.
Anal Bioanal Chem ; 416(11): 2809-2818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38189919

RESUMO

In this study, arsenic (As) speciation was investigated in the freshwater alga Chlamydomonas reinhardtii treated with 20 µg/L arsenate using fractionation as well as ICP-MS/ESI-MS analyses and was compared with the known As metabolite profile of wild-grown Saccharina latissima. While the total As accumulation in C. reinhardtii was about 85% lower than in S. latissima, the relative percentage of arsenolipids was significantly higher in C. reinhardtii (57.0% vs. 5.01%). As-containing hydrocarbons and phospholipids dominated the hydrophobic As profile in S. latissima, but no As-containing hydrocarbons were detectable in C. reinhardtii. Instead for the first time, an arsenoriboside-containing phytol (AsSugPhytol) was found to dominate the hydrophobic arsenicals of C. reinhardtii. Interestingly, this compound and its relatives had so far been only found in green marine microalgae, open sea plankton (mixed assemblage), and sediments but not in brown or red macroalgae. This compound family might therefore relate to differences in the arsenic metabolism between the algae phyla.


Assuntos
Arsênio , Arsenicais , Chlamydomonas reinhardtii , Algas Comestíveis , Laminaria , Arsenicais/química , Arsênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Hidrocarbonetos
16.
Mol Divers ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319483

RESUMO

Celangulin V is a natural ß-dihydroagarofuran derivative isolated from Celastrus angulatus which shows insecticidal activity in many agricultural pests. Using celangulin V as a molecular probe, we find out a new pesticide target: subunit H of V-ATPase. To explore the potential application of this novel target, lead sulfonamides have been found through virtual screening. Combined with the previous work, 46 sulfonamide derivatives are designed and synthesized. All target compounds are first screened for their insecticidal activities against Mythimna separata. The results of bioassay reveal that most of the designed compounds exhibit significant insecticidal activities against third-instar larvae of M. separata under the concentration of 10 mg/mL, and compound 8.4 shows the highest activity with LC50 value of 1.72 mg/mL, 15-fold smaller than that of celangulin V (25.89 mg/mL). Molecular docking results further indicated that compound 8.4 might serve as a potential inhibitor of the subunit H of V-ATPase. This study provides a potential sulfonamide candidate compound for the M. separata control.

17.
BMC Med Inform Decis Mak ; 24(1): 108, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664653

RESUMO

BACKGROUND: Mobile health (mHealth) may be an ideal solution for breast cancer (BC) patients in China to access weight management interventions. User retention and engagement are the main challenges faced by mHealth applications. A user persona, which is a user-centered design process, can lead to the development of mHealth that is more acceptable to the needs of target users. This study aimed to investigate the variety of experiences in weight management and the behavioral preferences of BC patients receiving chemotherapy to develop users' personal information and persona development for the design and implementation of mHealth interventions. METHODS: Sixteen individual semi-structured in-depth interviews were conducted with BC patients receiving chemotherapy. We employed the thematic analysis method to analyze the interview transcripts in NVivo 11 software. The themes obtained from the analysis were used as the subdomains of personas. A proforma was designed to extract each participant's experience in each subdomain. Patients who exhibited similar experience in subdomains were grouped into a persona using affinity diagrams. The personas were named according to their prominent features. A questionnaire survey was conducted to validate the personas and to test whether the personas that were generated from the qualitative interview data were applicable to the Chinese population with BC. RESULTS: Four themes were identified as subdomains of weight management personas: the perception of weight management while undergoing chemotherapy, symptoms and emotional disturbance, changes in diet and exercise, and health literacy and information seeking. Five personas were ultimately obtained: (1) positive weight controllers, (2) patients who were inactive due to fatigue, (3) young patients who avoided communication, (4) overweight patients with treatment priority, and (5) patients who engaged in irregular exercise. Finally, the quantitative study showed that 51.58% of patients chose one of these five personas to represent themselves in weight management. None of the patient reported selecting options that were not explicitly outlined in the questionnaire and provided personalized descriptions of their weight management characteristics. CONCLUSIONS: The selected personas were developed from in-depth interviews on biopsychosocial areas. They highlight different weight management patterns in Chinese BC patients and provide implications for both the design of mHealth systems and traditional interventions.


Assuntos
Neoplasias da Mama , Telemedicina , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/terapia , Feminino , China , Pessoa de Meia-Idade , Adulto , Pesquisa Qualitativa , Antineoplásicos/uso terapêutico , Design Centrado no Usuário
18.
Chem Biodivers ; 21(4): e202400206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38380820

RESUMO

Agricultural pests are the primary contributing factor to crop yield reduction, particularly in underdeveloped regions. Despite the significant efficacy of pesticides in pest control, their extensive use has led to the drug-fast of insecticide resistance. Developing of new environmentally friendly plant-based pesticides is an urgent necessity. In this study, a series of diaryl ether compounds containing propargyloxy and sulfonamide groups were designed. The synthesis of these 36 compounds primarily relied on nuclear magnetic resonance for structure determination, while single-crystal X-ray diffraction was employed for certain compounds. Meanwhile, the insecticidal activities against Mythimna separata were also assessed. Some of the compounds exhibited significantly enhanced activity, the LC50 value of the highest activity compound TD8 (0.231 mg/mL) demonstrating respective increases by 100-fold compared to the plant pesticide celangulin V (23.9 mg/mL), and a 5-fold increase with the positive control L-1 (1.261 mg/mL). The interaction between the target compound and the target, as well as the consistency of the target, were verified through symptomological analysis and molecular docking. The structure-activity relationships were also conducted. This study offered a novel trajectory for the advancement and formulation of future pesticides.


Assuntos
Inseticidas , Mariposas , Animais , Estrutura Molecular , Inseticidas/química , Éteres Fenílicos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
19.
Nano Lett ; 23(14): 6619-6628, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37409851

RESUMO

Stretchable conductors with stable electrical conductivity under various deformations are essential for wearable electronics, soft robots, and biointegrated devices. However, brittle film-based conductors on elastomeric substrates often suffer from unexpected electrical disconnection due to the obvious mechanical incompatibility between stiff films and soft substrates. We proposed a novel out-of-plane crack control strategy to achieve the strain-insensitive electrical performance of thin-film-based conductors, featuring conductive brittle materials, including nanocrystalline metals (Cu, Ag, Mo) and transparent oxides (ITO). Our metal film-based conductors exhibit an ultrahigh initial conductivity (1.3 × 105 S cm-1) and negligible resistance change (R/R0 = 1.5) over wide strain range from 0 to 130%, enabled by film-induced substrate cracking and liquid metal-induced electrical self-repairing. They could function well under multimodal deformations (stretching, bending, and twisting) and severe mechanical damage (cutting and puncturing). We demonstrated the strain-resilient electrical functionality of metal film-based conductors in a flexible light-emitting diode display that shows high mechanical compliance.

20.
Nano Lett ; 23(24): 11958-11967, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38090798

RESUMO

Flexible pressure sensors are devices that mimic the sensory capabilities of natural human skin and enable robots to perceive external stimuli. One of the main challenges is maintaining high sensitivity over a broad linear pressure range due to poor structural compressibility. Here, we report a flexible pressure sensor with an ultrahigh sensitivity of 153.3 kPa-1 and linear response over an unprecedentedly broad pressure range from 0.0005 to 1300 kPa based on interdigital-shaped, multigradient architectures, featuring modulus, conductivity, and microstructure gradients. Such multigradient architectures and interdigital-shaped configurations enable effective stress transfer and conductivity regulation, evading the pressure sensitivity-linear range trade-off dilemma. Together with high pressure resolution, high frequency response, and good reproducibility over the ultrabroad linear range, proof-of-concept applications such as acoustic wave detection, high-resolution pressure measurement, and healthcare monitoring in diverse scenarios are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA