Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(26): e2309091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247184

RESUMO

Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58Fe0.38P0.07O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.

2.
J Org Chem ; 89(1): 644-655, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38088130

RESUMO

A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.

3.
Small ; 19(14): e2206861, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604967

RESUMO

Because of the instability and Fenton reactivity of non-precious metal nitrogen-carbon based catalyst when processing the oxygen reduction reaction (ORR), seeking for electrocatalysts with highly efficient performance becomes very highly desired to speed up the commercialization of fuel cell. Herein, chromium (Cr)-N4  electrocatalyst containing extraterrestrial S formed axial S1 -Cr1 N4  bonds (S1 Cr1 N4 C) is achieved via an assembly polymerization and confined pyrolysis strategy. Benefiting from the adjusting  coordination configuration and electronic structure of the metal center through axial coordination, S1 Cr1 N4 C exhibits enhanced the intrinsic activity (half-wave potential (E1/2 ) is 0.90 V versus reversable hydrogen electrode, RHE) compared with that of CrN4 C and Pt/C catalysts. More notably, the catalyst is almost inert in catalyzing the Fenton reaction, and thus shows the high stability. Density functional theory (DFT) results further reveal that the existence of axial S atoms in S1 Cr1 N4 C moiety has the better ORR activity than Cr1 N4 C moieties. The axial S ligand in S1 Cr1 N4 C moiety can break the electron localization around the planar Cr1 N4  active center, which facilitated the rate-limiting reductive release of OH* and accelerated overall ORR process. The present work opens up a new avenue to modulate the axial ligand type of the single-atoms (SAs) active center to enhance intrinsic SAs performances.

4.
J Org Chem ; 88(23): 16598-16608, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37948397

RESUMO

An effective method for accessing diverse difluoroalkylated pyrrolo[1,2-a]indolediones via visible-light-induced PhI(OAc)2-promoted cascade difluoroalkylation/cyclization reaction under mild conditions has been established. This method is noteworthy for its use of DMSO-H2O as a green medium at room temperature and avoidance of photocatalysts. The reactions are straightforward to execute and convenient to expand on, provide good to excellent yields, and have good functional group tolerance.

5.
J Org Chem ; 88(16): 11712-11727, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530760

RESUMO

A convenient and efficient visible-light-induced method has been developed for the construction of sulfonated and selenylated indolo[1,2-a]quinolines through sulfonyl or selenyl radical-initiated tandem cyclization of unactivated alkynes with sodium sulfinates or diaryl diselenides under mild conditions. This protocol, which simply utilizes visible light as the safe and eco-friendly energy source and an inexpensive and nontoxic organic dye as a photocatalyst without the aid of an external photocatalyst, provides various sulfonyl- and selenyl-containing indolo[1,2-a]quinolines in moderate to good yields.

6.
Org Biomol Chem ; 20(48): 9722-9733, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36440712

RESUMO

A mild and efficient transition-metal-free radical difluorobenzylation/cyclization of unactivated alkenes toward the synthesis of difluorobenzylated polycyclic quinazolinone derivatives with easily accessible α,α-difluoroarylacetic acids has been developed. This transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. This methodology provided a highly attractive access to pharmaceutically valuable ArCF2-containing polycyclic quinazolinones.


Assuntos
Alcenos , Elementos de Transição , Ciclização , Quinazolinonas , Estrutura Molecular , Radicais Livres
7.
Org Biomol Chem ; 19(47): 10348-10358, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812461

RESUMO

A practical synthetic route to construct a variety of 3-benzyl spiro[4,5]trienones was developed via transition-metal Cu/Ag-catalyzed oxidative ipso-annulation of activated alkynes with unactivated toluenes using TBPB as an oxidant under microwave irradiation. This method allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in a single reaction through a sequence of C-H oxidative coupling, ipso-carbocyclization and dearomatization. The advantages of this protocol are its operational simplicity and broad substrate scope, and the ability to afford the desired products in moderate to good yields.

8.
Phys Chem Chem Phys ; 23(34): 18744-18751, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612412

RESUMO

The rapid development of electronic devices requires high power storage batteries. However, reported 3D carbon-based materials are semiconductors or metals and are used in Li- or Na-ion batteries with low capacities. Thus, it is of interest to discover whether there is a universal semi-metallic material for use in high performance Li-, Na-, and K-ion batteries. Inspired by the recent synthesis of 3D carbon-based materials, in the research reported here, a 3D regular porous structure (bct-C56) is designed using graphene sheets. The porous carbon-based material has mechanical, dynamic, thermal, and mechanical stabilities. Interestingly, bct-C56 exhibits semi-metallic features with two Dirac nodal surfaces with mirror symmetry, as well as high Fermi velocities, indicating high electron-transport abilities. More excitingly, its theoretical capacities are 743.8, 478.2, and 425.0 mA h g-1, with diffusion barriers of 0.05-0.12, 0.07-0.12, and 0.03-0.05 eV, average OCVs of 0.31, 0.45, and 0.59 V, and volume expansion levels of 1.2%, 0.02%, and 3.1%, in Li-, Na-, and K-ion batteries, respectively. All these excellent characteristics suggest that semi-metallic bct-C56 is a universal anode material for use in metal-ion batteries with a fast charge-discharge rate. In this research, not only was a new material with a Dirac nodal surface feature designed, but it also offers an approach for the creation of high performance and universal metal-ion battery anodes with 3D porous carbon materials.

9.
Org Biomol Chem ; 18(14): 2747-2757, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32227021

RESUMO

A silver-catalyzed efficient and direct C-H carbamoylation of quinolines with oxamic acids to access carbamoylated quinolines has been developed through oxidative decarboxylation reaction. The reaction proceeds smoothly over a broad range of substrates with excellent functional group tolerance and excellent yields under mild conditions.

10.
Org Biomol Chem ; 17(48): 10178-10187, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31763665

RESUMO

A practical and efficient synthetic route to construct a variety of 3-amidated quinoxalin-2(1H)-ones was developed via transition-metal free direct oxidative amidation of quinoxalin-2(1H)-ones with amidates using Selectfluor reagent as a mild oxidant. This protocol features mild reaction conditions, operational simplicity, broad substrate scope, and good to excellent yields.

11.
Phys Chem Chem Phys ; 21(3): 1029-1037, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30311925

RESUMO

Silicon-based two-dimensional (2D) materials have unique properties and extraordinary engineering applications. However, penta-silicene is unstable. Herein, by employing first-principles calculations, we provide a facile surface chemistry method, i.e. functionalization, to acquire and reconfigure stable penta-silicene for use in flexible lithium-ion batteries. Our results of density functional theory calculations showed that the reconfigured penta-silicene nanosheets possess a broad range of properties, including semiconductors with an indirect bandgap, semiconductors with a direct bandgap, semimetals and metals. For fluorinated penta-silicene, a fluorine-concentration-induced transition from a semiconductor to a metal is found. For fully fluorinated penta-silicene, a mechanically induced transition from a semiconductor with an indirect bandgap to a semiconductor with a direct bandgap is obtained. Our calculation results showed the reconfigured penta-silicene is a high-performance anode for use in flexible lithium (Li)-ion batteries. A transition from a semiconductor to a metal with adsorption of Li atoms indicates a high electrical conductivity. It possesses low Li diffusion barriers (0.08-0.28 eV), demonstrating a high mobility of Li ions. The metallic feature and low Li diffusion barriers reveal that it has an ultrafast charge/discharge rate. This work suggests that surface chemistry reconfiguration provides new stable materials with excellent mechanical properties and tunable electronic properties for their promising applications in flexible metal-ion batteries and solar batteries as well as nanoelectronics devices.

12.
Phys Chem Chem Phys ; 20(28): 18924-18930, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29700538

RESUMO

Auxetic materials have numerous promising engineering applications such as fracture resistance and energy storage due to their negative Poisson's ratios (NPRs). However, compared to materials possessing positive Poisson's ratios (PPRs), auxetic materials are rare. In this paper, by employing first principles calculations, we found a high NPR two-dimensional (2D) material, tungsten carbide (W2C), in the transition metal carbides (MXenes). Our results of the relatively moderate Young's modulus and fracture strength as well as the critical strain showed that the 2D monolayer W2C is an extraordinary flexible material. Our DFT results also demonstrated that W2C possesses high NPRs while Hf2C and Ta2C have PPRs. Furthermore, the mechanically induced deformation mechanism and the NPR formation mechanism of W2C have been proposed. Such an intrinsic NPR in W2C is attributed to the strong coupling between the C-p and W-d orbitals in the pyramid structural unit. The mechanically induced deformation mechanism and the PPR formation mechanism of Hf2C have also been determined. The intrinsic NPR for W2C transforms to PPR upon the surface functionalization induced. The behavior occurs due to the W-C interaction weakening. The excellent NPR in the 2D MXene material combined with other outstanding properties such as the metallic state would bring about its promising engineering prospects, ranging from the metal-ion battery, to automobiles and aircraft.

13.
Small ; 12(31): 4264-76, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27374920

RESUMO

Integration of semiconductors with noble metals to form heteronanostructures can give rise to many interesting plasmonic and electronic properties. A number of such heteronanostructures have been demonstrated comprising noble metals and n-type semiconductors, such as TiO2 , ZnO, SnO2 , Fe3 O4 , and CuO. In contrast, reports on heteronanostructures made of noble metals and p-type semiconductors are scarce. Cu2 O is an unintentional p-type semiconductor with unique properties. Here, the uniform coating of Cu2 O on two types of Au nanorods and systematic studies of the plasmonic properties of the resultant core-shell heteronanostructures are reported. One type of Au nanorods is prepared by seed-mediated growth, and the other is obtained by oxidation of the as-prepared Au nanorods. The (Au nanorod)@Cu2 O nanostructures produced from the as-prepared nanorods exhibit two transverse plasmon peaks, whereas those derived from the oxidized nanorods display only one transverse plasmon peak. Through electrodynamic simulations the additional transverse plasmon peak is found to originate from a discontinuous gap formed at the side of the as-prepared nanorods. The existence of the gap is verified and its formation mechanism is unraveled with additional experiments. The results will be useful for designing metal-semiconductor heteronanostructures with desired plasmonic properties and therefore also for exploring plasmon-enhanced applications in photocatalysis, solar-energy harvesting, and biotechnologies.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotubos/química , Anisotropia , Ressonância de Plasmônio de Superfície
14.
Chemphyschem ; 15(13): 2749-55, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25044132

RESUMO

By employing molecular dynamics simulations, the evolution of deformation of a monolayer graphene sheet under a central transverse loading are investigated. Dependence of mechanical responses on the symmetry (shape) of the loading domain, on the size of the graphene sheet, and on temperature, is determined. It is found that the symmetry of the loading domain plays a central role in fracture strength and strain. By increasing the size of the graphene sheet or increasing temperature, the tensile strength and fracture strain decrease. The results have demonstrated that the breaking force and breaking displacement are sensitive to both temperature and the symmetry of the loading domain. In addition, we find that the intrinsic strength of graphene under a central load is much smaller than that of graphene under a uniaxial load. By examining the deformation processes, two failure mechanisms are identified namely, brittle bond breaking and plastic relaxation. In the second mechanism, the Stone-Wales transformation occurs.

15.
Phys Chem Chem Phys ; 16(42): 23188-95, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25255171

RESUMO

Graphene quantum dots (GQDs) represent an important class of luminescent quantum dots owing to their low toxicity and superior biocompatibility. Chemical functionalization of GQDs and subsequent combination with other materials further provide attractive techniques for advanced bioapplications. Herein, we report the facile fabrication of fluorescent organosilane-functionalized graphene quantum dots (Si-GQDs) and their embedding into mesoporous hollow silica spheres as a biolabel for the first time. Well-proportioned Si-GQDs with bright and excitation dependent tunable emissions in the visible region were obtained via a simple and economical solvothermal route adopting graphite oxide as a carbon source and 3-(2-aminoethylamino)-propyltrimethoxysilane as a surface modifier. The as-synthesized Si-GQDs can be well dispersed and stored in organic solvents, easily manufactured into transparent film and bulk form, and particularly provide great potential to be combined with other materials. As a proof-of-principle experiment, we demonstrate the successful incorporation of Si-GQDs into hollow mesoporous silica spheres and conduct preliminary cellular imaging experiments. Interestingly, the Si-GQDs not only serve as fluorescent chromophores in the composite material, but also play a crucial role in the formation of mesoporous hollow silica spheres with a distinctive bi-layer architecture. The layer thickness and optical properties can be precisely controlled by simply adjusting the silane coupling agent addition procedure in the preparation process. Our demonstration of low-cost Si-GQDs and their encapsulation into multifunctional composites may expand the applications of carbon-based nanomaterials for future biomedical imaging and other optoelectronic applications.


Assuntos
Grafite/química , Imagem Molecular/métodos , Pontos Quânticos , Silanos/química , Dióxido de Silício/química , Composição de Medicamentos
16.
J Colloid Interface Sci ; 660: 617-627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266343

RESUMO

Clean H2 fuel obtained from the photocatalytic water splitting to hydrogen reaction could efficiently alleviate current energy crisis and the concomitant environmental pollution problems. Therefore, it is desirable to search for a highly efficient photocatalytic system to decrease the energy barrier of water splitting reaction. Herein, the 1T/2H mixed phase MoS2 sample with Schottky junction between contact interfaces is developed through molten salt synthesis for photocatalytic hydrogen production under a dye-sensitized system (Eosin Y-TEOA-MoS2) driven by the visible light. In mixed phase MoS2 sample, the photogenerated electrons of 2H-phase MoS2 migrated to the 1T-phase MoS2 are difficult to jump back because of the existence of Schottky barrier, which greatly suppresses the quenching of EY and therefore results in an enhanced hydrogen evolution performance. Therefore, the optimized MoS2 sample (MoS2-350) has an initial hydrogen evolution rate of 213 µmol h-1 and corresponding apparent quantum yield of 36.1 % at 420 nm, far higher than those of pure Eosin Y. It is strongly confirmed by the steady-state/time-resolved photoluminescence (PL) spectra and transient photocurrent response experiments. With the assistance of Density functional theory (DFT) calculation, the function of Schottky junction in photocatalytic hydrogen evolution reaction is well explained. In addition, a new and universal method (SVM curve) of judging oxidation or reduction quenching for photosensitizers is proposed.

17.
ACS Omega ; 8(31): 28702-28714, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576646

RESUMO

The quantitative identification of the coal texture is of great importance as a crucial parameter for coalbed methane (CBM) reservoir evaluation. This study combined drilling core data, electrical imaging logging data, and four conventional logging data, namely, compensation density (DEN), natural γ (GR), deep lateral resistivity (RD), and acoustic time difference (AC), to achieve accurate inversion of coal texture in the Shouyang Block. Meanwhile, wavelet analysis and Fisher discriminant analysis were introduced to the inversion process to further improve the accuracy. Through the utilization of software packages, such as Matlab and SPSS, the establishment of the coal texture logging interpretation chart of the No. 15 coal seam in the Shouyang block was successfully realized. The outcome of this comprehensive study reveals that the coal texture logging interpretation chart is an effective tool for the identification and classification of each coal texture and gangue. Moreover, the validity and reliability of this method were tested and confirmed using wells CS-8 and CS-9 in the region, achieving an accuracy of 97.1 and 93.2%, respectively. This innovative method has significant prospects for predicting and evaluating the coal texture in the Shouyang Block, which can be further applied to other regions.

18.
J Colloid Interface Sci ; 650(Pt B): 1773-1785, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37506418

RESUMO

Sonodynamic therapy (SDT) can generate reactive oxygen species to kill cancer cells by activating sonosensitizers under ultrasound (US) irradiation. Nevertheless, its application is greatly limited by low quantum yield of sonosensitizers, high levels of endogenous glutathione (GSH) and tumor hypoxia. Herein, a GSH-activated sonosensitizers with synergistic therapy effect (chemodynamic therapy (CDT) and SDT) are developed by depositing Fe(III)-artemisinin infinite coordination polymers (Fe(III)-ART CPs) in pores of mesoporous TiO2 nanoparticles (NPs). The formed Fe(III)-ART-TiO2 NPs have high sono-induced electron-hole separation efficiency because the deposited Fe(III)-ART CPs can provide isolated intermediate bands to capture sono-induced electrons in TiO2 NPs. Meanwhile, Fe3+ in Fe(III)-ART-TiO2 NPs are reduced to Fe2+ by GSH with oxygen-deficient sites generated to further capture sono-induced electrons in TiO2 NPs. Based on this, the reaction efficiency between water molecules and sono-induced holes is high enough to generate numerous hydroxyl radicals (•OH) without oxygen participated for overcoming tumor hypoxia. Additionally, through consuming GSH, the generated Fe2+ can catalyze ART to produce C-centered free radicals for CDT. Owing to these characteristics, Fe(III)-ART-TiO2 NPs show significant tumor suppression ability and good biocompatibility in vivo. The strategy of using CDT agent to modify sonosensitizers offers new options to improve SDT effect without introducing harmful substances.


Assuntos
Nanopartículas , Neoplasias , Humanos , Compostos Férricos , Hipóxia , Oxigênio , Glutationa , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
19.
Biomed Mater ; 18(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645918

RESUMO

The response sensitivity of surface material plays an important role in adjustable nano-bio interactionin vivo. In this present, a zwitterionic polymer (polyzwitterion) containing quaternary ammonium cation and sulfonamide anion poly(4-((4-(3-(methacryloyloxy)propoxy)phenyl) sulfonamido)-N, N, N-trimethyl-4-oxobutan-1-aminium chloride) (PMPTSA) was synthesized by Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization to explore the pH responsive behavior in tumors. The PMPTSA-coated gold nanoparticles (PMPTSA-@-Au NPs) showed zwitterionic nature such as antifouling ability, low cellular uptake and prolonged circulation time similar with common hydrophilic polymers, including polyethylene glycol (PEG), poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate) functional gold nanoparticles in physiological environment (pH 7.4). A high sensitivity and reversible positive charge conversion of P(MPTSA)-@-Au NPs at tumor slight acidic microenvironment (∼pH 6.8) leaded to an enhanced cellular internalization than that at pH 7.4 and increased tumor accumulation compared with PEG, polycarboxybetaines and polymer sulphobetaine (PSB) functional gold nanoparticles. The highly pH responsive PMPTSA will provide the promising application in cancer nanomedicine.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Polímeros , Polietilenoglicóis , Concentração de Íons de Hidrogênio
20.
Small ; 8(13): 2021-6, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22511540

RESUMO

Alignment control of polythiophene chains with mesostructured silica nanofibers through an organic-inorganic co-assembly approach is realized. Cationic ammonium surfactants with a polymerizable thiophene end group are synthesized and subsequently used as structure-directing agents to grow silica nanofibers with two different pore architectures. In situ polymerization produces mesostructured polythiophene-silica nanofibers with the polymer chains aligned along the pore channels.


Assuntos
Nanofibras/química , Nanotecnologia/métodos , Polímeros/química , Dióxido de Silício/química , Tiofenos/química , Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA