Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 154(3): 556-68, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911321

RESUMO

Skp2 E3 ligase is overexpressed in numerous human cancers and plays a critical role in cell-cycle progression, senescence, metabolism, cancer progression, and metastasis. In the present study, we identified a specific Skp2 inhibitor using high-throughput in silico screening of large and diverse chemical libraries. This Skp2 inhibitor selectively suppresses Skp2 E3 ligase activity, but not activity of other SCF complexes. It also phenocopies the effects observed upon genetic Skp2 deficiency, such as suppressing survival and Akt-mediated glycolysis and triggering p53-independent cellular senescence. Strikingly, we discovered a critical function of Skp2 in positively regulating cancer stem cell populations and self-renewal ability through genetic and pharmacological approaches. Notably, Skp2 inhibitor exhibits potent antitumor activities in multiple animal models and cooperates with chemotherapeutic agents to reduce cancer cell survival. Our study thus provides pharmacological evidence that Skp2 is a promising target for restricting cancer stem cell and cancer progression.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Neoplasias/enzimologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Antineoplásicos/química , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Genes p53 , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Transplante de Neoplasias , Neoplasias/tratamento farmacológico , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas Quinases Associadas a Fase S/química , Proteínas Quinases Associadas a Fase S/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Transplante Heterólogo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
2.
Blood ; 138(9): 758-772, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33786575

RESUMO

Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Movimento Celular , Proteína Forkhead Box O1/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima , Adenina/análogos & derivados , Adenina/farmacologia , Linhagem Celular Tumoral , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Piperidinas/farmacologia
3.
Mol Genet Metab ; 135(3): 171-178, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35101330

RESUMO

More than 1280 variants in the phenylalanine hydroxylase (PAH) gene are responsible for a broad spectrum of phenylketonuria (PKU) phenotypes. While the genotype-phenotype correlation is reaching 88%, for some inconsistent phenotypes with the same genotype additional factors like tetrahydrobiopterin (BH4), the PAH co-chaperone DNAJC12, phosphorylation of the PAH residues or epigenetic factors may play an important role. Very recently an additional player, the long non-coding RNA (lncRNA) transcript HULC, was described to regulate PAH activity and enhance residual enzyme activity of some PAH variants (e.g., the most common p.R408W) by using HULC mimics. In this review we present an overview of the lncRNA function and in particular the interplay of the HUCL transcript with the PAH and discuss potential applications for the future treatment of some PKU patients.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , RNA Longo não Codificante , Humanos , Mutação , Fenótipo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , RNA Longo não Codificante/genética
4.
Mol Biol Rep ; 49(1): 313-320, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34741708

RESUMO

BACKGROUND: Common vetch (Vicia sativa L.) is an annual legume with excellent suitability in cold and dry regions. Despite its great applied potential, the genomic information regarding common vetch currently remains unavailable. METHODS AND RESULTS: In the present study, the whole genome survey of common vetch was performed using the next-generation sequencing (NGS). A total of 79.84 Gbp high quality sequence data were obtained and assembled into 3,754,145 scaffolds with an N50 length of 3556 bp. According to the K-mer analyses, the genome size, heterozygosity rate and GC content of common vetch genome were estimated to be 1568 Mbp, 0.4345 and 35%, respectively. In addition, a total of 76,810 putative simple sequence repeats (SSRs) were identified. Among them, dinucleotide was the most abundant SSR type (44.94%), followed by Tri- (35.82%), Tetra- (13.22%), Penta- (4.47%) and Hexanucleotide (1.54%). Furthermore, a total of 58,175 SSR primer pairs were designed and ten of them were validated in Chinese common vetch. Further analysis showed that Chinese common vetch harbored high genetic diversity and could be clustered into two main subgroups. CONCLUSION: This is the first report about the genome features of common vetch, and the information will help to design whole genome sequencing strategies. The newly identified SSRs in this study provide basic molecular markers for germplasm characterization, genetic diversity and QTL mapping studies for common vetch.


Assuntos
Repetições de Microssatélites , Vicia sativa/genética , Sequenciamento Completo do Genoma/métodos , Composição de Bases , China , Mapeamento Cromossômico , Tamanho do Genoma , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
5.
Exp Cell Res ; 409(2): 112930, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800542

RESUMO

Plekha7 (Pleckstrin homology [PH] domain containing, family A member 7) regulates the assembly of proteins of the cytoplasmic apical zonula adherens junction (AJ), thus ensuring cell-cell adhesion and tight-junction barrier integrity. Little is known of Plekha7 function in cancer. In colorectal cancer (CRC) Plekha7 expression is elevated compared to adjacent normal tissue levels, increasing with clinical stage. Plekha7 was present at plasma membrane AJ with wild-type KRas (wt-KRas) but was dispersed in cells expressing mutant KRas (mut-KRas). Fluorescence lifetime imaging microscopy (FLIM) indicated a direct Plekha7 interaction with wt-KRas but scantily with mut-KRas. Inhibiting Plekha7 specifically decreased mut-KRas cell signaling, proliferation, attachment, migration, and retarded mut-KRAS CRC tumor growth. Binding of diC8-phosphoinositides (PI) to the PH domain of Plekha7 was relatively low affinity. This may be because a D175 amino acid residue plays a "sentry" role preventing PI(3,4)P2 and PI(3,4,5)P3 binding. Molecular or pharmacological inhibition of the Plekha7 PH domain prevented the growth of mut-KRas but not wt-KRas cells. Taken together the studies suggest that Plekha7, in addition to maintaining AJ structure plays a role in mut-KRas signaling and phenotype through interaction of its PH domain with membrane mut-KRas, but not wt-KRas, to increase the efficiency of mut-KRas downstream signaling.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Apoptose , Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Adesão Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Junções Intercelulares , Transdução de Sinais , Junções Íntimas , Células Tumorais Cultivadas
6.
Entropy (Basel) ; 24(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420459

RESUMO

Dimethyl carbonate is an important green chemical that has been widely used in the chemical industry. In the production of dimethyl carbonate, methanol oxidative carbonylation has been studied, but the conversion ratio of dimethyl carbonate using this method is too low, and the subsequent separation requires a large amount of energy due to methanol and dimethyl carbonate being azeotrope. In this paper, the strategy of "reaction instead of separation" is proposed. Based on this strategy, a novel process is developed to combine the production of DMC with that of dimethoxymethane (DMM) and dimethyl ether (DME). The co-production process was simulated using Aspen Plus software, and the product purity was up to 99.9%. The exergy analysis of the co-production process and the existing process was carried out. The exergy destruction and exergy efficiency were compared with those of the existing production processes. The results show that the exergy destruction of the co-production process is about 276% less than that of the single-production processes, and the exergy efficiencies in the developed co-production process are significantly improved. The utility loads of the co-production process are significantly lower than that of the single-production process. The developed co-production process increases the methanol conversion ratio to 95%, with a reduced energy requirement. It is proved that the developed co-production process can provide an advantageous option over the existing processes with improved energy efficiency and material savings. The strategy of "reaction instead of separation" is feasible. A new strategy is proposed for azeotrope separation.

7.
J Am Chem Soc ; 143(20): 7655-7670, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988982

RESUMO

Aptamers, synthetic single-strand oligonucleotides that are similar in function to antibodies, are promising as therapeutics because of their minimal side effects. However, the stability and bioavailability of the aptamers pose a challenge. We developed aptamers converted from RNA aptamer to modified DNA aptamers that target phospho-AXL with improved stability and bioavailability. On the basis of the comparative analysis of a library of 17 converted modified DNA aptamers, we selected aptamer candidates, GLB-G25 and GLB-A04, that exhibited the highest bioavailability, stability, and robust antitumor effect in in vitro experiments. Backbone modifications such as thiophosphate or dithiophosphate and a covalent modification of the 5'-end of the aptamer with polyethylene glycol optimized the pharmacokinetic properties, improved the stability of the aptamers in vivo by reducing nuclease hydrolysis and renal clearance, and achieved high and sustained inhibition of AXL at a very low dose. Treatment with these modified aptamers in ovarian cancer orthotopic mouse models significantly reduced tumor growth and the number of metastases. This effective silencing of the phospho-AXL target thus demonstrated that aptamer specificity and bioavailability can be improved by the chemical modification of existing aptamers for phospho-AXL. These results lay the foundation for the translation of these aptamer candidates and companion biomarkers to the clinic.


Assuntos
Anticorpos/imunologia , Aptâmeros de Nucleotídeos/imunologia , Neoplasias/imunologia , Anticorpos/química , Aptâmeros de Nucleotídeos/química , Humanos , Neoplasias/terapia
8.
Biochemistry ; 59(35): 3225-3234, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786414

RESUMO

RNA helices are often punctuated with non-Watson-Crick features that may be targeted by chemical compounds, but progress toward identifying such compounds has been slow. We embedded a tandem UU:GA mismatch motif (5'-UG-3':5'-AU-3') within an RNA hairpin stem to identify compounds that bind the motif specifically. The three-dimensional structure of the RNA hairpin and its interaction with a small molecule identified through virtual screening are presented. The G-A mismatch forms a sheared pair upon which the U-U base pair stacks. The hydrogen bond configuration of the U-U pair involves O2 of the U adjacent to the G and O4 of the U adjacent to the A. The G-A and U-U pairs are flanked by A-U and G-C base pairs, respectively, and the stability of the mismatch is greater than when the motif is within the context of other flanking base pairs or when the 5'-3' orientation of the G-A and U-U pairs is swapped. Residual dipolar coupling constants were used to generate an ensemble of structures against which a virtual screen of 64480 small molecules was performed. The tandem mismatch was found to be specific for one compound, 2-amino-1,3-benzothiazole-6-carboxamide, which binds with moderate affinity but extends the motif to include the flanking A-U and G-C base pairs. The finding that the affinity for the UU:GA mismatch is dependent on flanking sequence emphasizes the importance of the motif context and potentially increases the number of small noncanonical features within RNA that can be specifically targeted by small molecules.


Assuntos
Pareamento Incorreto de Bases , Benzotiazóis/farmacocinética , RNA/química , RNA/metabolismo , Amidas/farmacocinética , Pareamento Incorreto de Bases/efeitos dos fármacos , Pareamento de Bases/efeitos dos fármacos , Sequência de Bases/fisiologia , Fenômenos Biofísicos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/efeitos dos fármacos , RNA não Traduzido/química , RNA não Traduzido/efeitos dos fármacos , RNA não Traduzido/metabolismo , Especificidade por Substrato , Termodinâmica
9.
Bioconjug Chem ; 29(9): 3180-3195, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30168713

RESUMO

Quantitative imaging of apoptosis in vivo could enable real-time monitoring of acute cell death pathologies such as traumatic brain injury, as well as the efficacy and safety of cancer therapy. Here, we describe the development and validation of F-18-labeled caspase-3 substrates for PET/CT imaging of apoptosis. Preliminary studies identified the O-benzylthreonine-containing substrate 2MP-TbD-AFC as a highly caspase 3-selective and cell-permeable fluorescent reporter. This lead compound was converted into the radiotracer [18F]-TBD, which was obtained at 10% decay-corrected yields with molar activities up to 149 GBq/µmol on an automated radiosynthesis platform. [18F]-TBD accumulated in ovarian cancer cells in a caspase- and cisplatin-dependent fashion. PET imaging of a Jo2-induced hepatotoxicity model showed a significant increase in [18F]-TBD signal in the livers of Jo2-treated mice compared to controls, driven through a reduction in hepatobiliary clearance. A chemical control tracer that could not be cleaved by caspase 3 showed no change in liver accumulation after induction of hepatocyte apoptosis. Our data demonstrate that [18F]-TBD provides an immediate pharmacodynamic readout of liver apoptosis in mice by dynamic PET/CT and suggest that [18F]-TBD could be used to interrogate apoptosis in other disease states.


Assuntos
Apoptose , Caspase 3/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Especificidade por Substrato
10.
Phys Chem Chem Phys ; 20(46): 29249-29263, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30427341

RESUMO

Charged lipids in cell membranes and subcellular organelles are arranged in the form of a bilayer with the hydrocarbon tails sequestered away from the water and the polar head groups exposed to the aqueous environment. Most of them bear net negative charges leading to the negatively charged cell membranes. Charged lipid-lipid and lipid-protein interactions are generally dynamic and heavily depend on their local molecular concentrations. To examine the electrostatic properties of charged lipid layers in contact with an electrolyte solution, we incorporate the single chain mean field theory with Poisson-Boltzmann theory to explore the equilibrium structure of charged phospholipid membranes. Using the three bead coarse-grained model we reproduced the essential equilibrium properties of the charged phospholipid bilayer. We also investigate the influence of the mobile ions on the thickness of the layer, the area per lipid (APL), and the electrostatic potential of the membrane. Then we investigate the attraction-repulsion property of two charged nanoparticles which are stuck on the charged lipid molecules surrounded with mobile ions. After that we simulated the interaction between the Pleckstrin homology domain (PH domain) of Akt and the cytoplasmic membrane. Taking into account the electrostatic interaction, we observe the structure changes of the membrane at different concentrations of mobile ions in its equilibrium state. Also we discuss the influence of mobile ions on the size of the pore opened in the membrane by the charged protein. Such an observation may shed light on the activation of oncogenic Akt (or protein kinase B) around the membrane at the molecular level.


Assuntos
Bicamadas Lipídicas/química , Nanopartículas/química , Fosfolipídeos/química , Entropia , Distribuição de Poisson , Eletricidade Estática
11.
PLoS Comput Biol ; 11(1): e1004021, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569504

RESUMO

The Grb2-associated binding protein 1 (GAB1) integrates signals from different signaling pathways and is over-expressed in many cancers, therefore representing a new therapeutic target. In the present study, we aim to target the pleckstrin homology (PH) domain of GAB1 for cancer treatment. Using homology models we derived, high-throughput virtual screening of five million compounds resulted in five hits which exhibited strong binding affinities to GAB1 PH domain. Our prediction of ligand binding affinities is also in agreement with the experimental KD values. Furthermore, molecular dynamics studies showed that GAB1 PH domain underwent large conformational changes upon ligand binding. Moreover, these hits inhibited the phosphorylation of GAB1 and demonstrated potent, tumor-specific cytotoxicity against MDA-MB-231 and T47D breast cancer cell lines. This effort represents the discovery of first-in-class GAB1 PH domain inhibitors with potential for targeted breast cancer therapy and provides novel insights into structure-based approaches to targeting this protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Antineoplásicos/farmacologia , Proteínas Sanguíneas/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Fosfoproteínas/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Antineoplásicos/química , Proteínas Sanguíneas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Feminino , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfoproteínas/química , Ligação Proteica , Alinhamento de Sequência , Termodinâmica
12.
Proc Natl Acad Sci U S A ; 109(32): 13016-21, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826236

RESUMO

Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.


Assuntos
Transdiferenciação Celular/fisiologia , Fibroblastos/citologia , Mioblastos Cardíacos/citologia , Proteína Proto-Oncogênica c-ets-2/metabolismo , Pele/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Transdiferenciação Celular/genética , Citometria de Fluxo , Imunofluorescência , Técnicas de Inativação de Genes , Humanos , Camundongos , Mioblastos Cardíacos/fisiologia , Reação em Cadeia da Polimerase , Proteína Proto-Oncogênica c-ets-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 49(1): 31-5, 2015 Jan.
Artigo em Zh | MEDLINE | ID: mdl-25876492

RESUMO

OBJECTIVE: To investigate thirdhand smoke (THS) pollution in certain places of Nanjing, as well as to analyze its distribution characteristics. METHODS: From March to May, 2014, we selected 3 types of places (residencies, public places and transportation vehicles) that were close to people's living in Jianye,Yuhua,Jiangning,Xuanwu,Gulou and Pukou districts of Nanjing city.For each of the above 3 types of places, 2-3 smoking and non-smoking (smoking ban) locations were investigated, totally 51 locations, 9-10 samples were collected each location, totally 477 samples. The surface wipe sampling method in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilized to quantify the levels of nicotine that served as the tracer of THS pollution.One-way ANOVA and t-tests were employed to compare the levels of nicotine collected at different places and locations. RESULTS: Totally 477 samples were collected in this study, of which 27.0% was from residencies (129/477), 61.0% (291/477) from public places and 11.9% (57/477) from transportations. The levels of indoor surface nicotine in smoking residences, public places and transportations were (214 ± 55),(1 408 ± 177) and (1 511 ± 785) µg/m(2), respectively, which were all higher than those in the corresponding non-smoking places ((23 ± 9),(62 ± 11), and (46 ± 15) µg/m(2); t values were 13.79, 13.15, 3.45, respectively. P values were <0.001, <0.001 and 0.006, respectively).In the smoking places, the levels of surface nicotine on walls, desks, sofas, cabinets, door backsides and air conditioning openings were (171 ± 62),(232 ± 38),(373 ± 151),(903 ± 239), (978 ± 212), (1 721 ± 517) µg/m(2) (F = 7.06, P = 0.009).In the smoking condition, the levels of surface nicotine collected from public places were higher (F = 9.25, P = 0.024), while under non-smoking (smoking ban) conditions, the levels of surface nicotine collected from residences were lower (F = 7.88, P < 0.001). CONCLUSION: THS pollution was widespread in public places, residences and transportations in Nanjing city, which was more serious in the smoking environments than non-smoking (smoking ban) environments; the contamination was less serious in non-smoking (smoking ban) private residences; in the smoking condition, the levels of surface nicotine were relatively high at locations close to air conditioning openings, door backsides and cabinets.


Assuntos
Habitação , Logradouros Públicos , Poluição por Fumaça de Tabaco , Ar Condicionado , China , Humanos , Nicotina , Fumar , Espectrometria de Massas em Tandem , Meios de Transporte
14.
J Chem Inf Model ; 54(9): 2536-43, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25133604

RESUMO

In drug discovery and development, the conventional "single drug, single target" concept has been shifted to "single drug, multiple targets"--a concept coined as polypharmacology. For studies in this emerging field, dedicated and high-quality databases of multitargeting ligands would be exceedingly beneficial. To this end, we conducted a comprehensive analysis of the structural and chemical/biological profiles of polypharmacological agents and present a Web-based database (Polypharma). All of these compounds curated herein have been cocrystallized with more than one unique protein with intensive reports of their multitargeting activities. The present study provides more insight of drug multitargeting and is particularly useful for polypharmacology modeling. This specialized curation has been made publically available at http:/imdlab.org/polypharma/


Assuntos
Modelos Teóricos , Farmacologia , Bases de Dados de Compostos Químicos , Internet , Ligantes
15.
J Biol Chem ; 287(1): 245-256, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22065587

RESUMO

3-Formylchromone (3-FC) has been associated with anticancer potential through a mechanism yet to be elucidated. Because of the critical role of NF-κB in tumorigenesis, we investigated the effect of this agent on the NF-κB activation pathway. Whether activated by inflammatory agents (such as TNF-α and endotoxin) or tumor promoters (such as phorbol ester and okadaic acid), 3-FC suppressed NF-κB activation. It also inhibited constitutive NF-κB expressed by most tumor cells. This activity correlated with sequential inhibition of IκBα kinase (IKK) activation, IκBα phosphorylation, IκBα degradation, p65 phosphorylation, p65 nuclear translocation, and reporter gene expression. We found that 3-FC inhibited the direct binding of p65 to DNA, and this binding was reversed by a reducing agent, thus suggesting a role for the cysteine residue. Furthermore, mutation of Cys38 to Ser in p65 abolished this effect of the chromone. This result was confirmed by a docking study. 3-FC also inhibited IKK activation directly, and the reducing agent reversed this inhibition. Furthermore, mutation of Cys179 to Ala in IKK abolished the effect of the chromone. Suppression of NF-κB activation led to inhibition of anti-apoptotic (Bcl-2, Bcl-xL, survivin, and cIAP-1), proliferative (cyclin D1 and COX-2), invasive (MMP-9 and ICAM-1), and angiogenic (VEGF) gene products and sensitization of tumor cells to cytokines. Thus, this study shows that modification of cysteine residues in IKK and p65 by 3-FC leads to inhibition of the NF-κB activation pathway, suppression of anti-apoptotic gene products, and potentiation of apoptosis in tumor cells.


Assuntos
Cromonas/farmacologia , Cisteína , Regulação para Baixo/efeitos dos fármacos , Quinase I-kappa B/química , Quinase I-kappa B/metabolismo , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinógenos/toxicidade , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromonas/metabolismo , Ciclo-Oxigenase 2/genética , DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo/genética , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Humanos , MAP Quinase Quinase Quinases/metabolismo , Modelos Moleculares , Invasividade Neoplásica , Neovascularização Patológica/genética , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Proteólise/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/farmacologia
16.
Front Artif Intell ; 6: 1069353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035534

RESUMO

Accurate prediction of drug response is a crucial step in personalized medicine. Recently, deep learning techniques have been witnessed with significant breakthroughs in a variety of areas including biomedical research and chemogenomic applications. This motivated us to develop a novel deep learning platform to accurately and reliably predict the response of cancer cells to different drug treatments. In the present work, we describe a Java-based implementation of deep neural network method, termed JavaDL, to predict cancer responses to drugs solely based on their chemical features. To this end, we devised a novel cost function and added a regularization term which suppresses overfitting. We also adopted an early stopping strategy to further reduce overfit and improve the accuracy and robustness of our models. To evaluate our method, we compared with several popular machine learning and deep neural network programs and observed that JavaDL either outperformed those methods in model building or obtained comparable predictions. Finally, JavaDL was employed to predict drug responses of several aggressive breast cancer cell lines, and the results showed robust and accurate predictions with r 2 as high as 0.81.

17.
Clin Cancer Res ; 29(2): 446-457, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36346691

RESUMO

PURPOSE: Several MCL-1 inhibitors (MCL-1i), including AMG-176 and AZD5991, have shown promise in preclinical studies and are being tested for the treatment of hematologic malignancies. A unique feature of these agents is induction and stability of Mcl-1 protein; however, the precise mechanism is unknown. We aim to study the mechanism of MCL-1i-induced Mcl-1 protein stability. EXPERIMENTAL DESIGN: Using several B-cell leukemia and lymphoma cell lines and primary chronic lymphocytic leukemia (CLL) lymphocytes, we evaluated molecular events associated with Mcl-1 protein stability including protein half-life, reverse-phase protein array, protein-protein interaction, phosphorylation, ubiquitination, and de-ubiquitination, followed by molecular simulation and modeling. RESULTS: Using both in vivo and in vitro analysis, we demonstrate that MCL-1i-induced Mcl-1 protein stability is predominantly associated with defective Mcl-1 ubiquitination and concurrent apoptosis induction in both cell lines and primary CLL subjects. These MCL1i also induced ERK-mediated Mcl-1Thr163 phosphorylation, which partially contributed to Mcl-1 stability. Disruption of Mcl-1:Noxa interaction followed by Noxa degradation, enhanced Mcl-1 de-ubiquitination by USP9x, and Mule destabilization are the major effects of these inhibitors. However, unlike other BH3 proteins, Mule:Mcl-1 interaction was unaffected by MCL-1i. WP1130, a global deubiquitinase (DUB) inhibitor, abrogated Mcl-1 induction reaffirming a critical role of DUBs in the observed Mcl-1 protein stability. Further, in vitro ubiquitination studies of Mcl-1 showed distinct difference among these inhibitors. CONCLUSIONS: We conclude that MCL-1i blocked Mcl-1 ubiquitination via enhanced de-ubiquitination and dissociation of Mcl-1 from Noxa, Bak and Bax, and Mule de-stabilization. These are critical events associated with increased Mcl-1 protein stability with AMG-176 and AZD5991.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Antineoplásicos/uso terapêutico , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ubiquitina Tiolesterase/metabolismo
18.
iScience ; 26(11): 108151, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37915607

RESUMO

DIRAS3 is an imprinted tumor suppressor gene encoding a GTPase that has a distinctive N-terminal extension (NTE) not found in other RAS proteins. This NTE and the prenylated C-terminus are required for DIRAS3-mediated inhibition of RAS/MAP signaling and PI3K activity at the plasma membrane. In this study, we applied biochemical, biophysical, and computational methods to characterize the structure and function of the NTE. The NTE peptide recognizes phosphoinositides PI(3,4,5)P3 and PI(4,5)P2 with rapid kinetics and strong affinity. Lipid binding induces NTE structural change from disorder to amphipathic helix. Mass spectrometry identified N-myristoylation of DIRAS3. All-atom molecular dynamic simulations predict DIRAS3 could adhere to the membrane through both termini, suggesting the NTE is involved in targeting and stabilizing DIRAS3 on the membrane by double anchoring. Overall, our results are consistent with DIRAS3's function as a tumor suppressor, whereby the membrane-bound DIRAS3 can effectively target PI3K and KRAS at the membrane.

20.
Mol Pharm ; 9(4): 862-73, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22352375

RESUMO

Flavonoids are polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 monohydroxyl flavonoids with a -OH group at the 3, 4', 5 or 7 position, followed by 5 dihydroxyl flavonoids, and 2 trihydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at the 7-OH position in Caco-2 cell lysates with minor amounts of 4'-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 µM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells.


Assuntos
Flavonoides/metabolismo , Sulfotransferases/metabolismo , Apigenina/química , Apigenina/metabolismo , Arilsulfotransferase , Sítios de Ligação , Células CACO-2 , Flavanonas/química , Flavanonas/metabolismo , Flavonoides/química , Genisteína/química , Genisteína/metabolismo , Humanos , Quempferóis/química , Quempferóis/metabolismo , Cinética , Floretina/química , Floretina/metabolismo , Sulfotransferases/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA