Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 441(2): 114195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098466

RESUMO

Chondrocyte ferroptosis induces the occurrence of osteoarthritis (OA). As a key gene of OA, C5a receptor 1 (C5AR1) is related to ferroptosis. Here, we investigated whether C5AR1 interferes with chondrocyte ferroptosis during OA occurrence. C5AR1 was downregulated in PA-treated chondrocytes. Overexpression of C5AR1 increased the cell viability and decreased ferroptosis in chondrocytes. Moreover, Tumor necrosis factor superfamily member 13B (TNFSF13B) was downregulated in PA-treated chondrocytes, and knockdown of TNFSF13B eliminated the inhibitory effect of C5AR1 on ferroptosis in chondrocytes. More importantly, the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway inhibitor LY294002 reversed the inhibition of C5AR1 or TNFSF13B on ferroptosis in chondrocytes. Finally, we found that C5AR1 alleviated joint tissue lesions and ferroptosis in rats and inhibited the progression of OA in the rat OA model constructed by anterior cruciate ligament transection (ACLT), which was reversed by interfering with TNFSF13B. This study shows that C5AR1 reduces the progression of OA by upregulating TNFSF13B to activate the PI3K/Akt/GSK3ß/Nrf2/HO-1 pathway and thereby inhibiting chondrocyte sensitivity to ferroptosis, indicating that C5AR1 may be a potential therapeutic target for ferroptosis-related diseases.


Assuntos
Condrócitos , Ferroptose , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Osteoartrite , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptor da Anafilatoxina C5a , Animais , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Condrócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Ratos , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Receptor da Anafilatoxina C5a/metabolismo , Receptor da Anafilatoxina C5a/genética , Transdução de Sinais , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase (Desciclizante)
2.
Carcinogenesis ; 44(4): 356-367, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-36939367

RESUMO

Metastasis is the leading cause of colorectal cancer treatment failure and mortality. Communication between endothelium and tumor cells in the tumor microenvironment is required for cancer metastasis. Tumor-derived exosomes have been shown to increase vascular permeability by delivering microRNA (miRNA) to vascular endothelial cells, facilitating cancer metastasis. The mechanism by which Epithelial-mesenchymal transition (EMT) tumor cell-derived exosomes influence vascular permeability remains unknown. MicroRNA-29a (miR-29a) expression is up-regulated in colorectal cancer (CRC) tissues, which is clinically significant in metastasis. Exosomal miR-29a secreted by EMT-CRC cells has been found to decrease the expression of Zonula occlusion 1 (ZO-1), Claudin-5, and Occludin via targeting Kruppel-like factor 4 (KLF4). In vitro co-culture investigations further revealed that EMT-cancer cells release exosomal miR-29a, which alters vascular endothelial permeability. Furthermore, exosomal miR-29a promoted liver metastases in CRC mice. Our findings demonstrate that EMT-CRC cells may transport exosomal miR-29a to endothelial cells in the tumor microenvironment (TME). As a result, increased vascular permeability promotes the development and metastasis of CRC. Exosomal miR-29a has the potential to be a predictive marker for tumor metastasis as well as a viable therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , Exossomos , Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Células Endoteliais/metabolismo , Exossomos/metabolismo , Neoplasias Colorretais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica/patologia , Microambiente Tumoral/genética
3.
J Nat Prod ; 86(2): 368-379, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36692021

RESUMO

Angiogenesis and vasculogenic mimicry (VM) are crucial for the growth and metastasis of non-small-cell lung cancer (NSCLC). Most tumor angiogenesis inhibitors mainly target endothelial cell-mediated angiogenesis, ignoring tumor-cell-mediated VM and frequently leading to tumor recurrence and metastasis. Thus, development of bioactive molecules interfering with both tumor angiogenesis and VM is necessary. Identifying novel angiogenesis inhibitors from natural products is a promising strategy. Scoparasin B, a pimarane diterpene extracted from a marine-derived fungus, Eutypella sp. F0219, has an antibacterial effect. However, its effect on angiogenesis and VM remains unexplored. In this study, we first certified that scoparasin B showed a strong inhibition effect on angiogenesis and the VM process in vitro and ex vivo. Moreover, scoparasin B prominently impeded tumor growth, angiogenesis, and VM in an NCI-H1299 xenograft model. Further study revealed that scoparasin B restrained tumor angiogenesis and VM by reducing the VEGF-A level and suppressing the VEGF-A/VEGFR2 signaling pathway. This study first demonstrated scoparasin B inhibited tumor angiogenesis, VM, and tumor growth of NSCLC and revealed its underlying mechanism. These new findings further support the potential of scoparasin B as a novel angiogenesis inhibitor and give a hint for further exploring potential angiogenesis inhibitors from natural products.


Assuntos
Produtos Biológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores da Angiogênese/farmacologia , Produtos Biológicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Recidiva Local de Neoplasia , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular
4.
Angew Chem Int Ed Engl ; 62(2): e202213074, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36372782

RESUMO

Skeletal reorganization reactions have emerged as an intriguing tool for converting readily available compounds into complicated molecules inaccessible by traditional methods. Herein, we report a unique skeleton-reorganizing coupling reaction of cycloheptatriene and cycloalkenones with amines. In the presence of Rh/acid catalysis, cycloheptatriene can selectively couple with anilines to deliver fused 1,2-dihydroquinoline products. Mechanistic studies indicate that the retro-Mannich type ring-opening and subsequent intramolecular Povarov reaction account for the ring reorganization. Our mechanistic studies also revealed that skeleton-reorganizing amination between anilines and cycloalkenones can be achieved with acid. The synthetic utilization of this skeleton-reorganizing coupling reaction was showcased with a gram-scale reaction, synthetic derivatizations, and the late-stage modification of commercial drugs.


Assuntos
Aminas , Compostos de Anilina , Aminação , Esqueleto , Catálise
5.
Angew Chem Int Ed Engl ; 62(17): e202300036, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36826223

RESUMO

The catalytic bis-allylation of alkynes is an important but challenging protocol to construct all-carbon tetra-substituted alkenes. Particularly, the catalytic unsymmetrical bis-allylation of alkynes remains as an underexplored task to date. We herein report an unprecedented unsymmetrical bis-allylation by simultaneously utilizing electrophilic trifluoromethyl alkene and nucleophilic allylboronate as the allylic reagents. With the aid of robust Ni0 /NHC catalysis, valuable skipped trienes can be obtained in high regio- and stereo-selectivities under mild conditions. Mechanistic studies indicate that the reaction may proceed through a ß-fluorine elimination of a nickelacycle followed by a transmetalation step with allylboronate. The present method exhibits a good tolerance of various functional groups. Besides, the skipped triene products can undergo an array of elaborate transformations, which highlights the potential applications of this strategy.

6.
Inflamm Res ; 71(4): 461-472, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35320827

RESUMO

BACKGROUND: Heat shock protein family A member 5 (HSPA5), a recently identified suppressor of ferroptosis, was reported to potentially regulating osteoarthritis. However, the exact role of HSPA5 and how its expression was regulated in osteoarthritis are largely unclear. METHODS: Rat primary chondrocytes were treated with 10 ng/mL IL-1ß for 24 h and incubated with ferrostatin-1 (a ferroptosis inhibitor). Cell viability, production of TNF-α, ROS and MDA, expression levels of collagen II, MMP13, GPX4, and SND1, and Fe2+ concentration were detected. Gain- and loss-of-function manipulations were performed to investigate the effect of HSPA5 on chondrocyte functions, and SND1 shRNA (sh-SND1) was transfected into IL-1ß-treated primary chondrocytes alone or together with sh-HSPA5. Furthermore, the interaction between HSPA5 and GPX4 and the regulation of HSPA5 on GPX4 were explored. Finally, SND1 was knocked down in the rats with osteoarthritis, and the histopathology, expression of HSPA5-GPX4 axis, and levels of oxidative stress markers were evaluated. RESULTS: IL-1ß treatment could enhance extracellular matrix (ECM) degradation (collagen II reduced and MMP13 increased), promote ferroptosis, manifested by decreased cell viability, increased levels of TNF-α, ROS, MDA, and Fe2+ concentrations, and decreased level of GPX4 protein, and increase SND1 expression in chondrocytes, which could be reversed by ferrostatin-1. Knockdown of SND1 enhanced ECM degradation and suppressed ferroptosis IL-1ß-treated chondrocytes, which could be eliminated by knockdown of HSPA5. SND1 bound with HSPA5 at the 3'UTR and destabilized the HSPA5 mRNA. HSPA5 protein directly bound with GPX4 protein and positively regulate its expression. HSPA5 overexpression suppressed IL-1ß-induced chondrocyte ferroptosis, while this effect was counteracted by GPX4 silencing. Knockdown of SND1 upregulated HSPA5 and GPX4 in rat cartilage, inhibited inflammatory damage and ferroptosis, and alleviated OA progression. CONCLUSION: The RNA-binding protein SND1 promotes the degradation of GPX4 by destabilizing the HSPA5 mRNA and suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis chondrocytes.


Assuntos
Endonucleases , Ferroptose , Proteínas de Choque Térmico , MicroRNAs , Osteoartrite , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Células Cultivadas , Condrócitos , Endonucleases/genética , Proteínas de Choque Térmico/genética , Interleucina-1beta/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , MicroRNAs/genética , Osteoartrite/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biochem Mol Toxicol ; 36(6): e23042, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35315182

RESUMO

Formononetin (FMN) has been reported as a prospective antiosteoporotic medication. However, the antiosteoporotic properties of FMN are still unclear in a mouse model with diabetes-induced osteoporosis. An osteoporotic or osteopenic mouse model with type I diabetes mellitus (T1DM) was established using streptozotocin (40 mg/kg) injection for 5 consecutive days. After 12 weeks with FMN intragastric administration (0.5, 5, 20 mg/kg), the antiosteoporotic activity of FMN was evaluated in T1DM mice. FMN supplementation effectively improves Ca excretion and trabecular bone degeneration and impedes osteoclast differentiation and function to attenuate hyperglycemia-induced bone deterioration. In addition, FMN inhibited activating protein 1 (AP-1) and osteoclast-specific gene expression, Nfatc1, Ctsk, and TRAP. The administration of FMN has a beneficial effect to attenuate hyperglycemia-induced bone deteriorations, including osteoclastogenesis, trabecular bone, and Ca loss. Our study provided a prospective medication for the treatment of T1DM-related osteopenia or osteoporosis with FMN.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Osteoporose , Animais , Camundongos , Cálcio/metabolismo , Diferenciação Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Isoflavonas , Osteoclastos/metabolismo , Osteogênese , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Estudos Prospectivos , Ligante RANK/metabolismo , Fator de Transcrição AP-1/metabolismo
8.
Arch Phys Med Rehabil ; 103(6): 1179-1191, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34780729

RESUMO

OBJECTIVE: To investigate whether respiratory muscle training is capable of reducing the occurrence of respiratory complications and improving dysphagia (swallowing or cough function) after stroke. DATA SOURCES: Cochrane Library, Excerpta Medical Database (EMBASE), PUBMED, and Web of Science were searched for studies published in English; the China Biology Medicine (CBM), China Science and Technology Journal Database (VIP), China National Knowledge Infrastructure (CNKI), and Wanfang Database were searched for studies published in Chinese up to August 10, 2021. STUDY SELECTION: Eleven randomized control trials (RCTs) (N=523) met the inclusion criteria were included in this systematic review. DATA EXTRACTION: Data and information were extracted by two reviewers independently and disagreements was resolved by consensus with a third coauthor. Primary outcome was the occurrence of respiratory complications, secondary outcomes would be represented by swallowing and cough function. The quality of each included RCT were assessed by Cochrane risk-of-bias criteria and the GRADE evidence profile was provided to present information about the body of evidence and judgments about the certainty of underlying evidence for each outcome. DATA SYNTHESIS: Respiratory muscle training reduced the risk of respiratory complications (relative risk, 0.51; 95% confidence interval [CI], 0.28-0.93; I2=0%; P=.03; absolute risk difference, 0.068; number need to treat, 14.71) compared with no or sham respiratory intervention. It also decreased the liquid-type Penetration-Aspiration Scale scores by 0.81 (95% CI, -1.19 to -0.43; I2=39%; P<.0001). There was no significant association between respiratory muscle training and Functional Oral Intake Scale (FOIS) scores, cough function: increased FOIS scores by 0.47 (95% CI, -0.45 to 1.39; I2=55%; P=.32), decreased peak expiratory cough flow of voluntary cough by 18.70 L per minute (95% CI, -59.74 to 22.33; I2=19%; P=.37) and increased peak expiratory cough flow of reflex cough by 0.05 L per minute (95% CI, -40.78 to 40.87; I2=0%; P>.99). CONCLUSION: This meta-analysis provided evidence that respiratory muscle training is effective in reducing the risk of respiratory complications and improving dysphagia by reducing penetration or aspiration during swallowing liquid bolus after stroke. However, there was no sufficient evidence to determine that respiratory muscle training improves cough function. Additional multicenter studies using larger patient cohorts are required to validate and support these findings. Furthermore, long-term follow-up studies should be performed to measure outcomes, while avoiding bias due to confounding factors such as heterogeneity of the etiologies of dysphagia.


Assuntos
Transtornos de Deglutição , Transtornos Respiratórios , Acidente Vascular Cerebral , Exercícios Respiratórios , Tosse , Deglutição/fisiologia , Transtornos de Deglutição/complicações , Humanos , Acidente Vascular Cerebral/complicações
9.
Angew Chem Int Ed Engl ; 60(15): 8321-8328, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33463001

RESUMO

Depending on the reactant property and reaction mechanism, one major regioisomer can be favored in a reaction that involves multiple active sites. Herein, an orthogonal regulation of nucleophilic and electrophilic sites in the regiodivergent hydroamination of isoprene with indazoles is demonstrated. Under Pd-hydride catalysis, the 1,2- or 4,3-insertion pathway with respect to the electrophilic sites on isoprene could be controlled by the choice of ligands. In terms of the nucleophilic sites on indazoles, the reaction occurs at either the N1 - or N2 -position of indazoles is governed by the acid co-catalysts. Preliminary experimental studies have been performed to rationalize the mechanism and regioselectivity. This study not only contributes a practical tool for selective functionalization of isoprene, but also provides a guide to manipulate the regioselectivity for the N-functionalization of indazoles.

10.
Foodborne Pathog Dis ; 11(4): 313-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24447173

RESUMO

Pomegranate rind has been reported to inhibit several foodborne pathogens, and its antimicrobial activity has been attributed mainly to its tannin fraction. This study aimed to investigate the antimicrobial activity of the tannin-rich fraction from pomegranate rind (TFPR) against Listeria monocytogenes and its mechanism of action. The tannin-related components of TFPR were analyzed by high-performance liquid chromatography and liquid chromatography-mass spectrometry, and the minimum inhibitory concentration (MIC) of TFPR was determined using the agar dilution method. Extracellular potassium concentration, the release of cell constituents, intra- and extracellular ATP concentrations, membrane potential, and intracellular pH (pHin) were measured to elucidate a possible antibacterial mechanism. Punicalagin (64.2%, g/g) and ellagic acid (3.1%, g/g) were detected in TFPR, and the MICs of TFPR were determined to be 1.25-5.0 mg/mL for different L. monocytogenes strains. Treatment with TFPR induced a decrease of the intracellular ATP concentration, an increase of the extracellular concentrations of potassium and ATP, and the release of cell constituents. A reduction of pHin and cell membrane hyperpolarization were observed after treatment. Electron microscopic observations showed that the cell membrane structures of L. monocytogenes were apparently impaired by TFPR. It is concluded that TFPR could destroy the integrity of the cell membrane of L. monocytogenes, leading to a loss of cell homeostasis. These findings indicate that TFPR has the potential to be used as a food preservative in order to control L. monocytogenes contamination in food and reduce the risk of listeriosis.


Assuntos
Anti-Infecciosos/farmacologia , Doenças Transmitidas por Alimentos/prevenção & controle , Listeria monocytogenes/efeitos dos fármacos , Listeriose/prevenção & controle , Lythraceae/química , Extratos Vegetais/farmacologia , Trifosfato de Adenosina/análise , Anti-Infecciosos/isolamento & purificação , Membrana Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Ácido Elágico/isolamento & purificação , Ácido Elágico/farmacologia , Contaminação de Alimentos/prevenção & controle , Conservantes de Alimentos/química , Conservantes de Alimentos/isolamento & purificação , Doenças Transmitidas por Alimentos/microbiologia , Frutas/química , Concentração de Íons de Hidrogênio , Taninos Hidrolisáveis/isolamento & purificação , Taninos Hidrolisáveis/farmacologia , Listeria monocytogenes/citologia , Listeriose/microbiologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Potássio/análise , Taninos/isolamento & purificação , Taninos/farmacologia
11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(10): 2612-6, 2014 Oct.
Artigo em Zh | MEDLINE | ID: mdl-25739195

RESUMO

In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

12.
J Epidemiol Glob Health ; 14(2): 462-469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372894

RESUMO

BACKGROUND: Poor sleep quality is a global public health concern. This study aimed to identify the risk factors for sleep disorders and clarify their causal effects. METHODS: Data were obtained from the National Health and Nutrition Examination Survey (NHANES) and Mendelian randomization (MR)-Base databases. Baseline characteristics of individuals with and without sleep disorders were compared. A multivariate logistic regression analysis was performed to calculate the effects of each variable on sleep disorders. Causal effects of blood lead levels and hypertension on sleep disorders were assessed using MR analysis. RESULTS: In total, 3660 individuals were enrolled in the study. The prevalence of self-reported sleep disorders was 26.21%. Serum lead level, serum mercury level, serum retinol level, prevalence of hypertension, and daily vigorous work duration were significantly higher for those in the sleep disorders group than the control group. After adjusting for various covariates, the effects of serum lead and hypertension on sleep disorders were stable from logistic regression models 1-4. MR analysis showed that blood lead levels were causally related to the risk of sleep disorders (odds ratio (OR) = 1.09, 95% confidence interval (CI) 1.01-1.17, P = 0.030). There was no causal link between elevated blood pressure and sleep disorders (OR = 0.99, 95% CI 0.94-1.04, P = 0.757). Goodness-of-fit tests and sensitivity analyses were used to verify the reliability of the results. CONCLUSIONS: Blood lead is positively and causally associated with an increased risk of sleep disorders. These findings provide a novel perspective regarding sleep protection. Taking effective measures to reduce lead exposure may significantly improve sleep health.


Assuntos
Chumbo , Análise da Randomização Mendeliana , Inquéritos Nutricionais , Transtornos do Sono-Vigília , Humanos , Chumbo/sangue , Masculino , Feminino , Adulto , Transtornos do Sono-Vigília/epidemiologia , Transtornos do Sono-Vigília/sangue , Pessoa de Meia-Idade , Fatores de Risco , Hipertensão/epidemiologia , Hipertensão/sangue , Prevalência
13.
Sci Bull (Beijing) ; 69(5): 688-703, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38238207

RESUMO

Aqueous zinc-ion batteries (AZIBs) are attracting worldwide attention due to their multiple merits such as extreme safety, low cost, feasible assembly, and environmentally friendly enabled by water-based electrolytes. At present, AZIBs have experienced systematic advances in battery components including cathode, anode, and electrolyte, whereas research involving separators is insufficient. The separator is the crucial component of AZIBs through providing ion transport, forming contact with electrodes, serving as a container for electrolyte, and ensuring the efficient battery operation. Considering this great yet ignored significance, it is timely to present the latest advances in design strategies, the systematic classification and summary of separators. We summarize the separator optimization strategies mainly along two approaches including the modification of the frequently used glass fiber and the exploitation of new separators. The advantages and disadvantages of the two strategies are analyzed from the material types and the characteristics of different strategies. The effects and mechanisms of various materials on regulating the uniform migration and deposition of Zn2+, balancing the excessively concentrated nucleation points, inhibiting the growth of dendrites, and the occurrence of side reactions were discussed using confinement, electric field regulation, ion interaction force, desolvation, etc. Finally, potential directions for further improvement and development of AZIBs separators are proposed, aiming at providing helpful guidance for this booming field.

14.
Medicine (Baltimore) ; 103(34): e39398, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39183411

RESUMO

Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.


Assuntos
Luteolina , Neoplasias , Transdução de Sinais , Luteolina/farmacologia , Luteolina/uso terapêutico , Humanos , Transdução de Sinais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos
15.
Protein Pept Lett ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39219421

RESUMO

The SCG5 gene has been demonstrated to play an essential role in the development and progression of a range of malignant neoplasms. The regulation of SCG5 expression involves multiple biological pathways. According to relevant studies, SCG5 is differentially expressed in different cancers, and its up- or down-regulation may even affect tumour growth, invasion, and migration, which caught our attention. Therefore, we summarise the regulatory roles played by the SCG5 gene in a variety of cancers and the biological regulatory mechanisms associated with its possible promotion or inhibition of tumour biological behavior, to further explore the potential of SCG5 as a new tumour marker and hopefully provide theoretical guidance for subsequent disease research and treatment.

16.
World J Clin Oncol ; 15(3): 419-433, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38576593

RESUMO

BACKGROUND: Accurate preoperative prediction of lymph node metastasis (LNM) in esophageal cancer (EC) patients is of crucial clinical significance for treatment planning and prognosis. AIM: To develop a clinical radiomics nomogram that can predict the preoperative lymph node (LN) status in EC patients. METHODS: A total of 32 EC patients confirmed by clinical pathology (who underwent surgical treatment) were included. Real-time fluorescent quantitative reverse transcription-polymerase chain reaction was used to detect the expression of B7-H3 mRNA in EC tissue obtained during preoperative gastroscopy, and its correlation with LNM was analyzed. Radiomics features were extracted from multi-modal magnetic resonance imaging of EC using Pyradiomics in Python. Feature extraction, data dimensionality reduction, and feature selection were performed using XGBoost model and leave-one-out cross-validation. Multivariable logistic regression analysis was used to establish the prediction model, which included radiomics features, LN status from computed tomography (CT) reports, and B7-H3 mRNA expression, represented by a radiomics nomogram. Receiver operating characteristic area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate the predictive performance and clinical application value of the model. RESULTS: The relative expression of B7-H3 mRNA in EC patients with LNM was higher than in those without metastasis, and the difference was statistically significant (P < 0.05). The AUC value in the receiver operating characteristic (ROC) curve was 0.718 (95%CI: 0.528-0.907), with a sensitivity of 0.733 and specificity of 0.706, indicating good diagnostic performance. The individualized clinical prediction nomogram included radiomics features, LN status from CT reports, and B7-H3 mRNA expression. The ROC curve demonstrated good diagnostic value, with an AUC value of 0.765 (95%CI: 0.598-0.931), sensitivity of 0.800, and specificity of 0.706. DCA indicated the practical value of the radiomics nomogram in clinical practice. CONCLUSION: This study developed a radiomics nomogram that includes radiomics features, LN status from CT reports, and B7-H3 mRNA expression, enabling convenient preoperative individualized prediction of LNM in EC patients.

17.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493151

RESUMO

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Angiogênese , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células
18.
Sci Rep ; 14(1): 7654, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561419

RESUMO

Epidermal growth factor receptor (EGFR) exon 19 deletion is a major driver for the drug resistance of non-small cell lung cancer (NSCLC). Identification small inhibitor capable of selectively inhibiting EGFR-19del NSCLC is a desirable strategy to overcome drug resistance in NSCLC. This study aims to screen an inhibitor for EGFR exon 19 deletion cells and explore its underlying mechanism. High through-put screen was conducted to identify an inhibitor for EGFR-19del NSCLC cells. And tenovin-3 was identified as a selective inhibitor of PC9 cells, an EGFR-19del NSCLC cells. Tenovin-3 showed particular inhibition effect on PC9 cells proliferation through inducing apoptosis and ferroptosis. Mechanistically, tenovin-3 might induce the apoptosis and ferroptosis of PC9 cells through mitochondrial pathway, as indicated by the change of VDAC1 and cytochrome c (cyt c). And bioinformatics analyses showed that the expression levels of SLC7A11 and CPX4 were correlated with NSCLC patient's survival. Our findings provide evidences for tenovin-3 to be developed into a novel candidate agent for NSCLC with EGFR exon 19 deletion. Our study also suggests that inducing ferroptosis may be a therapeutic strategy for NSCLC with EGFR exon 19 deletion.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores ErbB/metabolismo , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Mutação
19.
Foodborne Pathog Dis ; 10(10): 867-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23841657

RESUMO

Listeria monocytogenes is an important foodborne pathogen of public health concern. A total of 902 retail food samples, including 342 ready-to-eat (RTE) foods, 366 infant foods, and 194 raw chickens were collected randomly in supermarkets and farmers' markets in 12 geographic areas in Shaanxi Province, China and screened for L. monocytogenes. All L. monocytogenes isolates were characterized by antimicrobial susceptibility testing, serotyping, and pulsed-field gel electrophoresis (PFGE). Twenty-seven (3.0%) samples were positive for L. monocytogenes, and 39 L. monocytogenes isolates were recovered from positive samples. Of these L. monocytogenes isolates, 21 isolates (53.8%) showed resistance to at least one antimicrobial. The isolates displayed resistance most frequently to oxacillin (18 isolates, 46.2%), followed by tetracycline (five isolates, 12.8%), erythromycin (four isolates, 10.3%), trimethoprim/sulfamethoxazole (three isolates, 7.7%), chloramphenicol (two isolates, 5.1%), and vancomycin (one isolate, 2.6%). All isolates were sensitive or displayed intermediate resistance to gentamicin, ampicillin, ciprofloxacin, and amikacin. Four serotypes including serotype 1/2b, 4b, 4e, and 1/2a were identified in those foodborne isolates. PFGE analysis demonstrated that some isolates with the same PFGE patterns came from different food sources, and isolates from the same food source tend to cluster closely. Presence of L. monocytogenes of clinically important serotypes in retail foods and their antimicrobial resistance constitute a potential risk for the public. Appropriate measures should be taken by government, industry, and consumers to reduce the risk posed by this ubiquitous pathogen.


Assuntos
Antibacterianos/farmacologia , Galinhas/microbiologia , Microbiologia de Alimentos , Listeria monocytogenes/isolamento & purificação , Listeriose/microbiologia , Carne/microbiologia , Animais , China/epidemiologia , Análise por Conglomerados , Eletroforese em Gel de Campo Pulsado/veterinária , Humanos , Lactente , Listeria monocytogenes/classificação , Listeria monocytogenes/genética , Listeriose/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Sorotipagem
20.
Cell Death Discov ; 9(1): 433, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040675

RESUMO

Lower back pain (LBP) is a common degenerative musculoskeletal disease that imposes a huge economic burden on both individuals and society. With the aggravation of social aging, the incidence of LBP has increased globally. Intervertebral disc degeneration (IDD) is the primary cause of LBP. Currently, IDD treatment strategies include physiotherapy, medication, and surgery; however, none can address the root cause by ending the degeneration of intervertebral discs (IVDs). However, in recent years, targeted therapy based on specific molecules has brought hope for treating IDD. The tumor suppressor gene p53 produces a transcription factor that regulates cell metabolism and survival. Recently, p53 was shown to play an important role in maintaining IVD microenvironment homeostasis by regulating IVD cell senescence, apoptosis, and metabolism by activating downstream target genes. This study reviews research progress regarding the potential role of p53 in IDD and discusses the challenges of targeting p53 in the treatment of IDD. This review will help to elucidate the pathogenesis of IDD and provide insights for the future development of precision treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA