Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 579(7797): 73-79, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132690

RESUMO

The ability to grow properly sized and good quality crystals is one of the cornerstones of single-crystal diffraction, is advantageous in many industrial-scale chemical processes1-3, and is important for obtaining institutional approvals of new drugs for which high-quality crystallographic data are required4-7. Typically, single crystals suitable for such processes and analyses are grown for hours to days during which any mechanical disturbances-believed to be detrimental to the process-are carefully avoided. In particular, stirring and shear flows are known to cause secondary nucleation, which decreases the final size of the crystals (though shear can also increase their quantity8-14). Here we demonstrate that in the presence of polymers (preferably, polyionic liquids), crystals of various types grow in common solvents, at constant temperature, much bigger and much faster when stirred, rather than kept still. This conclusion is based on the study of approximately 20 diverse organic molecules, inorganic salts, metal-organic complexes, and even some proteins. On typical timescales of a few to tens of minutes, these molecules grow into regularly faceted crystals that are always larger (with longest linear dimension about 16 times larger) than those obtained in control experiments of the same duration but without stirring or without polymers. We attribute this enhancement to two synergistic effects. First, under shear, the polymers and their aggregates disentangle, compete for solvent molecules and thus effectively 'salt out' (that is, induce precipitation by decreasing solubility of) the crystallizing species. Second, the local shear rate is dependent on particle size, ultimately promoting the growth of larger crystals (but not via surface-energy effects as in classical Ostwald ripening). This closed-system, constant-temperature crystallization driven by shear could be a valuable addition to the repertoire of crystal growth techniques, enabling accelerated growth of crystals required by the materials and pharmaceutical industries.

2.
Plant Cell ; 34(11): 4329-4347, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35916734

RESUMO

The mechanisms underlying leafy heads in vegetables are poorly understood. Here, we cloned a quantitative trait locus (QTL) controlling leafy heads in lettuce (Lactuca sativa). The QTL encodes a transcription factor, SAWTOOTH 1 (LsSAW1), which has a BEL1-like homeodomain and is a homolog of Arabidopsis thaliana. A 1-bp deletion in Lssaw1 contributes to the development of leafy heads. Laser-capture microdissection and RNA-sequencing showed that LsSAW1 regulates leaf dorsiventrality and loss-of-function of Lssaw1 downregulates the expression of many adaxial genes but upregulates abaxial genes. LsSAW1 binds to the promoter region of the adaxial gene ASYMMETRIC LEAVES 1 (LsAS1) to upregulate its expression. Overexpression of LsAS1 compromised the effects of Lssaw1 on heading. LsSAW1 also binds to the promoter region of the abaxial gene YABBY 1 (LsYAB1), but downregulates its expression. Overexpression of LsYAB1 led to bending leaves in LsSAW1 genotypes. LsSAW1 directly interacts with KNOTTED 1 (LsKN1), which is necessary for leafy heads in lettuce. RNA-seq data showed that LsSAW1 and LsKN1 exert antagonistic effects on the expression of thousands of genes. LsSAW1 compromises the ability of LsKN1 to repress LsAS1. Our results suggest that downregulation or loss-of-function of adaxial genes and upregulation of abaxial genes allow for the development of leafy heads.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lactuca/genética , Lactuca/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
3.
Anal Chem ; 96(25): 10111-10115, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869290

RESUMO

The Si window is the most widely used internal reflection element (IRE) for electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS), yet local chemical etching on Si by concentrated OH- anions bottlenecks the reliable application of this method in strong alkaline electrolytes. In this report, atomic layer deposition of a 25 nm nonconductive TiO2 barrier layer on the reflecting plane of a Si prism is demonstrated to address this challenge. In situ ATR-SEIRAS measurement on a Au film electrode with the Si/TiO2 composite IRE in 1 M NaOH reveals reversible global spectral features without spectral distortion at 1000-1300 cm-1, in stark contrast to those obtained with a bare Si window. By applying this structured ATR-SEIRAS, ethanol electrooxidation on a Pt/C catalyst in 1 and 5 M NaOH is explored, manifesting that such high pH values prevent the adsorption of as-formed acetate in the C2 pathway but not that of CO intermediate in the C1 pathway.

4.
Anal Bioanal Chem ; 416(3): 745-757, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812219

RESUMO

Moenomycin A, an antimicrobial growth promoter widely used as an additive in aquaculture feedstuffs, has been restricted for use in the European Union and China due to its potential risk of promoting resistant strains of pathogenic bacteria and causing residues in aquatic animal products. Although methods for analyzing moenomycin A in feedstuffs have been developed, no established method exists for aquatic matrices. In this study, we present, for the first time, a sensitive and validated high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for the determination of moenomycin A in aquatic animal products. Samples were extracted using methanol and purified with the QuEChERS method employing C18 sorbent. The aliquot was dried under a nitrogen stream, reconstituted with methanol-water solvent, and analyzed by HPLC-MS/MS. The developed method exhibited good linearity (r2 > 0.995) over a wide concentration range (1-100 µg/L) and a low limit of detection (1 µg/kg). Average recoveries ranged between 70 and 110% at spiked concentrations of 1, 50, and 100 µg/kg, with associated intra- and inter-day relative standard deviations of 1.25 to 7.32% (n = 6) and 2.91 to 10.08% (n = 3), for different representative aquatic animal production, respectively. To the best of our knowledge, this is the first reported HPLC-MS/MS method for the quantification of moenomycin A in aquatic animal products. The new approach was effectively employed in the analysis of moenomycin A across various aquatic samples.


Assuntos
Metanol , Espectrometria de Massas em Tandem , Animais , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , China , Extração em Fase Sólida/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38581337

RESUMO

Objective: With the improvement of living standards, consumers are paying more and more attention to the quality of rice. Traditional rice quality detection relies on human sensory judgment, which is inaccurate and inefficient. With the continuous development of molecular imaging technology, more and more scholars at home and abroad have begun to pay attention to its application in the nondestructive testing of agricultural products. Molecular imaging technology combines the advantages of spectral technology and image technology, which can achieve rapid, nondestructive and accurate detection of rice quality. In this paper, taking rice as the research object, we carried out nondestructive detection research on rice varieties, moisture and starch content using molecular imaging technology. We proposed a rapid detection method based on molecular imaging technology for rice variety identification, moisture content and starch content. Molecular images of the rice samples from four origins were obtained using a molecular imaging system, the regions of interest of the rice were identified and, spectral data, textural features and morphological features of the rice were extracted. Spectral, textural and morphological features were selected by principal component analysis (PCA), and nine feature wavelengths were obtained and an optimal model was established with an accuracy of 91.67%, which demonstrated the feasibility of molecular imaging. By comparing the models, the BCC-LS-SVR model based on the RB function had the highest accuracy with R2 of 0.989, RMSEP of 0.767%, R2 of 0.985, and RMSEC of 0.591%. Moreover, starchy rice was detected using molecular imaging. The PCA-SVR model based on the RBF kernel function had the highest accuracy with R2 of 0.989, RMSEC of 0.445%, R2 of 0.991, and RMSEP of 0.669%. Our models demonstrated high accuracy in identifying rice varieties, as well as quantifying moisture and starch content, showcasing the feasibility of molecular imaging technology in rice quality assessment. This research offers a rapid, nondestructive, and accurate method for rice quality assessment, promising significant benefits for agricultural producers and consumers.

6.
Plant J ; 109(1): 35-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699639

RESUMO

Horticultural crops mainly include fruits, vegetables, ornamental trees and flowers, and tea trees (Melaleuca alternifolia). They produce a variety of nutrients for the daily human diet in addition to the nutrition provided by staple crops, and some of them additionally possess ornamental and medicinal features. As such, horticultural crops make unique and important contributions to both food security and a colorful lifestyle. Under the current climate change scenario, the growing population and limited arable land means that agriculture, and especially horticulture, has been facing unprecedented challenges to meet the diverse demands of human daily life. Breeding horticultural crops with high quality and adaptability and establishing an effective system that combines cultivation, post-harvest handling, and sales becomes increasingly imperative for horticultural production. This review discusses characteristic and recent research highlights in horticultural crops, focusing on the breeding of quality traits and the mechanisms that underpin them. It additionally addresses challenges and potential solutions in horticultural production and post-harvest practices. Finally, we provide a prospective as to how emerging technologies can be implemented alongside interdisciplinary basic research to enhance our understanding and exploitation of horticultural crops.


Assuntos
Inteligência Artificial , Bioengenharia , Biologia Computacional , Produtos Agrícolas , Horticultura , Mudança Climática , Flores , Frutas , Pesquisa Interdisciplinar , Nutrientes , Melhoramento Vegetal , Árvores , Verduras
7.
New Phytol ; 237(4): 1391-1404, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319612

RESUMO

Leaves are strikingly diverse in terms of shapes and complexity. The wild and cultivated strawberry plants mostly develop trifoliate compound leaves, yet the underlying genetic basis remains unclear in this important fruit crop in Rosaceae. Here, we identified two EMS mutants designated simple leaf1 (sl1-1 and sl1-2) and one natural simple-leafed mutant monophylla in Fragaria vesca. Their causative mutations all reside in SL1 (FvH4_7g28640) causing premature stop codon at different positions in sl1-1 and sl1-2 and an eight-nucleotide insertion (GTTCATCA) in monophylla. SL1 encodes a transcription regulator with the conserved DNA-binding domain GT-1 and the catalytic domain of protein kinases PKc. Expression of SL1pro::SL1 in sl1-1 completely restored compound leaf formation. The 35S::SL1 lines developed palmate-like leaves with four or five leaflets at a low penetrance. However, overexpressing the truncated SL1ΔPK caused no phenotypes, probably due to the disruption of homodimerization. SL1 is preferentially expressed at the tips of leaflets and serrations. Moreover, SL1 is closely associated with the auxin pathway and works synergistically with FveLFYa in leaf morphogenesis. Overall, our work uncovered a new type of transcription regulator that promotes compound leaf formation in the woodland strawberry and shed new lights on the diversity of leaf complexity control.


Assuntos
Fragaria , Fragaria/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Mutação/genética , Fenótipo
8.
Theor Appl Genet ; 136(12): 241, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37930450

RESUMO

KEY MESSAGE: The mutated LsTT2 and Ls2OGD genes are responsible for white seeds and yellow seeds in lettuce, respectively. Three LsCHS genes are involved in the biosynthesis of flavonoid in seed coats. Lettuce seeds have several different colors, including black, yellow, and white. The genetic mechanisms underlying color variations of lettuce seeds remain unknown. We used genome-wide association studies (GWAS) and map-based cloning approaches to clone genes controlling the color of lettuce seeds. LsTT2, which encodes an R2R3-MYB transcription factor and is homologous to the TT2 gene in Arabidopsis, was shown to be the causal gene for the variation of black and white seeds in lettuce. A point mutation leads to the lack of stop codon in the LsTT2 transcript, resulting in white seeds. Knockout of the LsTT2 gene converted black seeds to white seeds. The locus controlling yellow seeds was mapped to Chromosome 2. Knockout of two 2-oxoglutarate-dependent dioxygenases (2OGD) genes from the candidate region converted black seeds to yellow seeds, suggesting that these two 2OGD proteins catalyze the conversion of yellow metabolites to black metabolites. We also showed that three LsCHS genes from the candidate region are associated with flavonoid biosynthesis in seeds. Knockout mutants of the three LsCHS genes decreased color intensity. This study provides new insights into the regulation of flavonoid biosynthesis in plants.


Assuntos
Arabidopsis , Lactuca , Lactuca/genética , Estudo de Associação Genômica Ampla , Sementes/genética , Flavonoides
9.
Langmuir ; 39(49): 17782-17797, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033267

RESUMO

Myofibrillar protein (MP) aggregate models have been established to elucidate the correlation between their aggregate sizes and interfacial properties. The interfacial layer thickness was measured by the polystyrene latex method and quartz crystal microbalance with dissipation measurement. Interfacial conformations were then characterized in situ (front-surface fluorescence spectroscopy) and ex situ (reactive sulfhydryl group and secondary structure measurement following MP displacement). The viscoelasticity of the interfacial film and its resistance to surfactant-induced competitive displacement were reflected by the dilatational rheology and dynamic interfacial tension with the bulk phase exchange. Finally, we compared the findings of competitive displacement before/after adding a sulfhydryl-blocking agent, N-ethylmaleimide, to highlight the role of S-S linkage on interfacial film formation and stability. We substantiated that the aggregate size of the MP governed their interfacial properties. Small-sized aggregates exhibited more ordered secondary structures on the oil-water interface, which was conducive to the adsorption ratio of the protein and the adsorption dynamics. Although larger aggregates lowered the diffusion rate during interfacial film formation, they allowed the thicker and more viscoelastic interfacial film to be constructed afterward through more disulfide bond formation, resulting in greater resistance to surfactant-induced competitive displacement.


Assuntos
Proteínas , Surfactantes Pulmonares , Tensão Superficial , Tensoativos/química , Adsorção , Dissulfetos
10.
Arch Virol ; 168(4): 112, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918497

RESUMO

In this study, rectal samples collected from 60 stray dogs in dog shelters were screened for canine kobuvirus and other enteroviruses by quantitative real-time reverse transcription polymerase chain reaction. Canine kobuvirus was detected in 25% (15/60) of the samples. In the 15 positive samples, the coinfection rates of canine distemper virus, canine coronavirus, canine astrovirus, canine norovirus, and canine rotavirus were 26.67%, 20.00%, 73.33%, 0%, and 20.00%, respectively. Phylogenetic analysis based on partial VP1 sequences identified a novel canine kobuvirus that was a recombinant of canine and feline kobuvirus. Bayesian evolutionary analysis revealed that the rate of evolution of the VP1 gene of canine kobuvirus was 1.36 × 10-4 substitutions per site per year (95% highest posterior density interval, 6.28 × 10-7 - 4.30 × 10-4 substitutions per site per year). Finally, the divergence time of VP1 was around 19.44 years ago (95% highest posterior density interval, 12.96-27.57 years).


Assuntos
Doenças do Gato , Doenças do Cão , Kobuvirus , Infecções por Picornaviridae , Cães , Animais , Gatos , Kobuvirus/genética , Filogenia , Teorema de Bayes , China/epidemiologia , Fezes
11.
Macromol Rapid Commun ; 44(20): e2300309, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37501566

RESUMO

With the rapid development of energy storage technology, the operation of portable and wearable devices is inseparable from high energy density power supplies. However, the demand for high performance supercapacitors in movable smart electronics is still restrained by their insufficient areal capacitance and limited power/energy densities. In addition, some electroactive materials, including metal oxides, conductive polymers, graphene, porous carbons, etc., are inevitable to use extra adhesives for the preparation of electrode materials. In this work, integrated hierarchical graphitic porous carbon membranes used as the electrodes without adhesives are successfully synthesized, via pyrolyzing poly(ionic liquid)s (PILs)-metal organic frameworks (MOFs) composite membranes. The asymmetric supercapacitor is assembled by the carbonized PIL-MOF composite membrane and PILs-derived porous carbon membrane, and exhibits significant areal capacitance with remarkable power and energy densities. In the two-electrode system, the areal capacitance can reach 9.5 F cm-2 with an energy density of 1.91 mWh cm-2 . In the fabricated all-solid-state supercapacitors, the areal capacitance and energy density achieved 3.2 F cm-2 and 0.65 mWh cm-2 , respectively, exceeding most reported ones. Therefore, the integrated carbon membrane electrodes with high areal capacitance reveal great potential in miniaturized devices, and further show a wider application scope through regulating PILs.


Assuntos
Grafite , Líquidos Iônicos , Estruturas Metalorgânicas , Nanoporos , Carbono
12.
Phys Chem Chem Phys ; 25(19): 13383-13392, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37157860

RESUMO

Surface passivation by organic dyes has been an effective strategy for simultaneous enhancement of the efficiency and stability of perovskite solar cells. However, lack of in-depth understanding of how subtle structural changes in dyes leads to distinctly different passivation effects is a challenge for screening effective passivation molecules (PMs). In an experiment done by Han et al. (Adv. Energy Mater., 2019, 9, 1803766), three donor-π-acceptor (D-π-A) dyes (SP1, SP2, and SP3) with distinct electron donors have been applied to passivate the perovskite surface, where the efficiency and stability of PSCs are quite different. Herein, we carried out first-principles calculations and ab initio molecular dynamics (AIMD) simulations on the structures and electronic properties of SP1, SP2, SP3, and their passivated perovskite surfaces. Our results showed that SP3 enhances the carrier transfer rate, electric field, and absorption region compared to SP1 and SP2. Moreover, AIMD simulations reveal that the cooperative multiple interactions of O-Pb, S-Pb, and H-I between SP3 and the perovskite surface result in a stronger passivation effect in a humid environment than that of SP1 and SP2. This work is expected to pave the way for screening dye passivation molecules to endow perovskite solar cells with high efficiency and stability.

13.
Proc Natl Acad Sci U S A ; 117(52): 33668-33678, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33288708

RESUMO

Leafy head is a unique type of plant architecture found in some vegetable crops, with leaves bending inward to form a compact head. The genetic and molecular mechanisms underlying leafy head in vegetables remain poorly understood. We genetically fine-mapped and cloned a major quantitative trait locus controlling heading in lettuce. The candidate gene (LsKN1) is a homolog of knotted 1 (KN1) from Zea mays Complementation and CRISPR/Cas9 knockout experiments confirmed the role of LsKN1 in heading. In heading lettuce, there is a CACTA-like transposon inserted into the first exon of LsKN1 (LsKN1▽). The transposon sequences act as a promoter rather than an enhancer and drive high expression of LsKN1▽. The enhanced expression of LsKN1▽ is necessary but not sufficient for heading in lettuce. Data from ChIP-sequencing, electrophoretic mobility shift assays, and dual luciferase assays indicate that the LsKN1▽ protein binds the promoter of LsAS1 and down-regulates its expression to alter leaf dorsoventrality. This study provides insight into plant leaf development and will be useful for studies on heading in other vegetable crops.


Assuntos
Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Lactuca/genética , Mutagênese Insercional/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Proteínas de Plantas/genética , Regulação para Cima/genética , Sequência de Bases , Duplicação Gênica , Genes de Plantas , Lactuca/anatomia & histologia , Filogenia , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética , Ligação Proteica , Locos de Características Quantitativas/genética , Homologia de Sequência do Ácido Nucleico , Transcrição Gênica
14.
Anim Biotechnol ; 34(4): 1305-1313, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34985384

RESUMO

This study aimed to explore the genetic basis of muscle development in goats. The transcriptome dataset for differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs) of goat muscle at different developmental stages were obtained using RNA-Seq. A total of 447,806,481 and 587,559,465 clean reads in the longissimus dorsi muscle of Dazu black goats between 75d embryonic stage and 1d after birth were generated through Illumina paired-end sequencing, and their mapping rates were 89.82 and 90.99%, respectively. Moreover, 4517 DEGs and 648 DELs were identified, and 4784 lncRNA-mRNA targeting relationships were predicted. Gene function annotation results showed that 4101 DEGs were significantly enriched to 1098 GO terms, and 2014 DEGs were significantly enriched to 40 KEGG pathways, including many GO terms and pathways related to muscle development, such as cell differentiation and Wnt signaling pathway. Then, 10 DELs and 20 DEGs were randomly selected for RT-qPCR verification, and the agreement rate between the verification and RNA-Seq results was 90%, indicating the high reliability of the RNA-Seq data analysis. In conclusion, this study obtained several mRNAs and lncRNAs related to the muscle development of Dazu black goats and identified several targeted regulatory pairs of lncRNA-mRNA. This study may serve as a reference to understand the genetic basis and molecular mechanism of muscle development in goats.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Perfilação da Expressão Gênica/veterinária , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Cabras/genética , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Análise de Sequência de RNA/veterinária , Desenvolvimento Muscular/genética
15.
Luminescence ; 38(8): 1529-1535, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37309286

RESUMO

A novel multi-color emitting Na2 YMg2 V3 O12 :Sm3+ phosphor was synthesized using a solid-state reaction, and its crystal structure, luminescence properties, and thermal stability were studied. Charge transfer within the (VO4 )3- groups in the Na2 YMg2 V3 O12 host led to a broad emission band between 400 and 700 nm, with a maximum at 530 nm. The Na2 Y1-x Mg2 V3 O12 :xSm3+ phosphors exhibited a multi-color emission band under 365 nm near-ultraviolet (near-UV) light, consisting of the green emission of the (VO4 )3- groups and sharp emission peaks at 570 nm (yellow), 618 nm (orange), 657 nm (red), and 714 nm (deep red) of Sm3+ ions. The optimal doping concentration of Sm3+ ions was found to be 0.05 mol%, and the dipole-dipole (d-d) interaction was primarily responsible for the concentration quenching phenomenon. Using the acquired Na2 YMg2 V3 O12 :Sm3+ phosphors, commercial BaMgAl10 O17 :Eu2+ blue phosphor, and a near-UV light-emitting diode (LED) chip, a white-LED lamp was designed and packaged. It produced bright neutral white light, manifesting a CIE coordinate of (0.314, 0.373), a color rendering index (CRI) of 84.9, and a correlated color temperature (CCT) of 6377 K. These findings indicate the potential of Na2 YMg2 V3 O12 :Sm3+ phosphor to be used as a multi-color component for solid-state illumination.


Assuntos
Iluminação , Luminescência , Sódio , Raios Ultravioleta , Temperatura
16.
Phytother Res ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37086182

RESUMO

Colorectal cancer (CRC) is a common malignant tumor with high morbidity and mortality rates worldwide. Although surgical resection and adjuvant radiotherapy/chemotherapy are the mainstays of CRC treatment, the efficacy is unsatisfactory due to several limitations, including high drug resistance. Accordingly, there is a dire need for new drugs or a novel combination approach to treat this patient population. Herein, we found that cinnamaldehyde (CA) could exert an antitumor effect in HCT-116 cell lines. Target fishing, molecular imaging, and live-cell tracing using an alkynyl-CA probe revealed that the heat shock 60 kDa protein 1 (HSPD1) protein was the target of CA. The covalent binding of CA with HSPD1 altered its stability. Furthermore, our results demonstrated that CA could induce cell apoptosis by inhibiting the PI3K/Akt signaling pathway and enhanced anti-CRC activity both in vitro and in vivo. Meanwhile, CA combined with different chemotherapeutic agents was beneficial to patients resistant to anti-CRC drug therapy.

17.
Molecules ; 28(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959729

RESUMO

Cinnamaldehyde (CA) showed potent activity against melanoma in our previous study, and the structure of unsaturated aldehydes is envisaged to play a role. Nevertheless, its limited drug availability restricts its clinical application. Therefore, a series of CA analogues were synthesized to evaluate their anti-melanoma activities across various melanoma cell lines. These compounds were also tested for their toxicity against the different normal cell lines. The compound with the most potential, CAD-14, exhibited potent activity against the A375, A875 and SK-MEL-1 cells, with IC50 values of 0.58, 0.65, and 0.82 µM, respectively. A preliminary molecular mechanism study of CAD-14 indicated that it could inhibit the p38 pathway to induce apoptosis, and suppress tumor growth by inhibiting the expression of ENO1. Furthermore, an acute toxicity study depicted that CAD-14 has better safety and tolerability than CA in vivo. These findings indicate that CAD-14 might be a lead compound for exploring effective anti-melanoma drugs.


Assuntos
Antineoplásicos , Melanoma , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Melanoma/metabolismo , Acroleína/farmacologia , Acroleína/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células
18.
Angew Chem Int Ed Engl ; 62(35): e202307212, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37407432

RESUMO

Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions-25 wt.% LiCl and 62 wt.% H3 PO4 -cooled to -78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl- , ice-like water clusters form, and H⋅⋅⋅Cl- bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules' O-H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O-H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH- and H+ , the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2 O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.

19.
Plant J ; 105(1): 197-208, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33118252

RESUMO

For diploid organisms that are highly heterozygous, a phased haploid genome can greatly aid in functional genomic, population genetic and breeding studies. Based on the genome sequencing of 135 single sperm cells of the elite tea cultivar 'Fudingdabai', we herein phased the genome of Camellia sinensis, one of the most popular beverage crops worldwide. High-resolution genetic and recombination maps of Fudingdabai were constructed, which revealed that crossover (CO) positions were frequently located in the 5' and 3' ends of annotated genes, while CO distributions across the genome were random. The low CO frequency in tea can be explained by strong CO interference, and CO simulation revealed the proportion of interference insensitive CO ranged from 5.2% to 11.7%. We furthermore developed a method to infer the relatedness between tea accessions and detected complex kinship and genetic signatures of 106 tea accessions. Among them, 59 accessions were closely related with Fudingdabai and 31 of them were first-degree relatives. We additionally identified genes displaying allele specific expression patterns between the two haplotypes of Fudingdabai and genes displaying significantly differential expression levels between Fudingdabai and other haplotypes. These results lay the foundation for further investigation of genetic and epigenetic factors underpinning the regulation of gene expression and provide insights into the evolution of tea plants as well as a valuable genetic resource for future breeding efforts.


Assuntos
Camellia sinensis/genética , Troca Genética/genética , Genoma de Planta/genética , Pólen/genética , Alelos , Mapeamento Cromossômico , Genes de Plantas/genética , Filogenia
20.
J Cell Biochem ; 123(2): 231-247, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34636091

RESUMO

In recent years, long noncoding RNAs (lncRNAs) have been demonstrated to be important tumor-associated regulatory factors. LncRNA growth arrest-specific transcript 5 (Gas5) acts as an anti-oncogene in most cancers. Whether Gas5 acts as an oncogene or anti-oncogene in hepatocellular carcinoma (HCC) remains unclear. In the present study, the expression and role of Gas5 in HCC were investigated in vitro and in vivo. Lower expression levels of Gas5 were determined in HCC tissues and cells by quantitative reverse transcription-polymerase chain reaction. Overexpressed Gas 5 lentiviral vectors were constructed to analyze their influence on cell viability, migration, invasion, and apoptosis. Fluorescence in situ hybridization was used to identify the subcellular localization of Gas5. Protein complexes that bound to Gas5 were isolated from HepG2 cells through pull-down experiments and analyzed by mass spectrometry. A series of novel Gas5-interacting proteins were identified and bioinformatics analysis was carried out. These included ribosomal proteins, proteins involved in protein folding, sorting, and transportation in the ER, some nucleases and protein enzymes involved in gene transcription, translation, and other proteins with various functions.78 kDa glucose-regulated protein (GRP78) was identified as a direct target of Gas5 by Rip-qPCR and Western blot analysis assay. Gas5 inhibited HepG2 cell growth and induced cell apoptosis via upregulating CHOP to activate the ER stress signaling pathway. Further studies indicated that the knockdown of CHOP by shRNA partially reversed Gas5-mediated apoptosis in HepG2 cells. Magnetic resonance imaging showed that the ectopic expression of Gas5 inhibited the growth of HCC in nude mice. These findings suggest that Gas5 functions as a tumor suppressor and induces apoptosis through activation of ER stress by targeting the CHOP signal pathway in HCC.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Fator de Transcrição CHOP/metabolismo , Adulto , Idoso , Feminino , Células Hep G2 , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Fator de Transcrição CHOP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA