Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroradiology ; 66(3): 353-360, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38236424

RESUMO

OBJECTIVE: Cavernous sinus invasion (CSI) plays a pivotal role in determining management in pituitary adenomas. The study aimed to develop a Convolutional Neural Network (CNN) model to diagnose CSI in multiple centers. METHODS: A total of 729 cases were retrospectively obtained in five medical centers with (n = 543) or without CSI (n = 186) from January 2011 to December 2021. The CNN model was trained using T1-enhanced MRI from two pituitary centers of excellence (n = 647). The other three municipal centers (n = 82) as the external testing set were imported to evaluate the model performance. The area-under-the-receiver-operating-characteristic-curve values (AUC-ROC) analyses were employed to evaluate predicted performance. Gradient-weighted class activation mapping (Grad-CAM) was used to determine models' regions of interest. RESULTS: The CNN model achieved high diagnostic accuracy (0.89) in identifying CSI in the external testing set, with an AUC-ROC value of 0.92 (95% CI, 0.88-0.97), better than CSI clinical predictor of diameter (AUC-ROC: 0.75), length (AUC-ROC: 0.80), and the three kinds of dichotomizations of the Knosp grading system (AUC-ROC: 0.70-0.82). In cases with Knosp grade 3A (n = 24, CSI rate, 0.35), the accuracy the model accounted for 0.78, with sensitivity and specificity values of 0.72 and 0.78, respectively. According to the Grad-CAM results, the views of the model were confirmed around the sellar region with CSI. CONCLUSIONS: The deep learning model is capable of accurately identifying CSI and satisfactorily able to localize CSI in multicenters.


Assuntos
Adenoma , Seio Cavernoso , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/cirurgia , Seio Cavernoso/diagnóstico por imagem , Estudos Retrospectivos , Redes Neurais de Computação , Sensibilidade e Especificidade , Adenoma/diagnóstico por imagem , Adenoma/cirurgia
2.
Langmuir ; 33(25): 6398-6403, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28578578

RESUMO

Metal-mediated interlocking rings won the 2016 Nobel Prize in Chemistry. The metal-directed interlocking rings in macromolecular systems (e.g., proteins) may be similar to the form of Maxwell's electromagnetic waves; the metal ions may shuttle among the rings in the special environment. To verify this hypothesis, we designed a general approach to synthesize the multicolored gold nanoparticles (GNPs) mediated by Au(I)-directed interlocking rings in proteins. The Au(I) ions shuttled among these interlocking rings in the strong alkaline solution. Through the rapid nucleation method, the multicolored GNPs of different morphology and sizes were synthesized in the multiple honeycombed templates. On the basis of the "three-color" principle of Thomas Young, we extracted the red, green, and blue (RGB) alterations of GNPs to fabricate a visual sensor array for protein discrimination. The fingerprints (ΔRGB) were obtained from the target proteins and fed into computer programs. The proposed sensing platform was also applied to detect lysozyme in human tears with satisfactory results. Importantly, we forecasted that lysozyme could be the effective drug for curing dacryocystitis and nasolacrimal duct obstruction diseases.


Assuntos
Ouro/química , Cátions , Humanos , Nanopartículas Metálicas , Muramidase , Proteínas , Lágrimas
3.
Bioact Mater ; 42: 366-378, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39308552

RESUMO

Thrombosis and infection are pivotal clinical complications associated with interventional blood-contacting devices, leading to significant morbidity and mortality. To address these issues, we present a stepwise metal-catechol-(amine) (MCA) surface engineering strategy that efficiently integrates therapeutic nitric oxide (NO) gas and antibacterial peptide (ABP) onto catheters, ensuring balanced anti-thrombotic and anti-infective properties. First, copper ions were controllably incorporated with norepinephrine and hexanediamine through a one-step molecular/ion co-assembly process, creating a NO-generating and amine-rich MCA surface coating. Subsequently, azide-polyethylene glycol 4-N-hydroxysuccinimidyl and dibenzylcyclooctyne modified ABP were sequentially immobilized on the surface via amide coupling and bioorthogonal click chemistry, ensuring the dense grafting of ABP while maintaining the catalytic efficacy for NO. This efficient integration of ABP and NO-generating ability on the catheter surface provides potent antibacterial properties and ability to resist adhesion and activation of platelets, thus synergistically preventing infection and thrombosis. We anticipate that this synergistic modification strategy will offer an effective solution for advancing surface engineering and enhancing the clinical performance of biomedical devices.

4.
Toxicology ; 502: 153718, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160929

RESUMO

Bisphenol A (BPA), a ubiquitous endocrine disruptor, is implicated in the cognitive deficits observed in both children and animals. Especially, BPA-induced spatial memory deterioration during the whole development phase of rodents has been well delineated. However, whether BPA exposure on the different development phases exerts similar effects on the prefrontal cortex (PFC) dependent visual memory is still elusive. Here, we chose two exposure windows, the whole gestation and lactation phases (E0∼P21) and the whole juvenile and adolescent phases (P22∼P60), for exposing rats to BPA. The visual memory of those rats was accessed by object recognition testing in the open field after BPA exposure and a constant recovery interval. The results revealed a substantial decline of visual memory under both exposure conditions, accompanied by an increase in anxiety-like behavior in BPA-exposed rats. Notably, after a 20-day recovery period, those behavioral changes induced by BPA exposure during P22∼60, not E0∼P21, were reversed compared to the control rats. According to morphological analysis of those rats after recovery, we found that the spine density of pyramidal neurons in the PFC were significant decreased in rats with BPA exposure during E0∼P21 and there was no difference between rats with or without BPA exposure during P22∼P60. Additionally, a similar change trend in excitatory receptors expression was observed under both exposure conditions. After an additional 20 days of recovery, the behavioral changes in rats with perinatal BPA exposure reverted to the normal status. Our present findings illuminate the dynamic effects of BPA on PFC-dependent functions across two crucial early developmental stages of life.


Assuntos
Compostos Benzidrílicos , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Criança , Ratos , Animais , Adolescente , Ratos Sprague-Dawley , Compostos Benzidrílicos/toxicidade , Fenóis/toxicidade , Memória Espacial , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
5.
Research (Wash D C) ; 7: 0423, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091634

RESUMO

Thrombosis and infection are 2 major complications associated with central venous catheters (CVCs), resulting in substantial mortality and morbidity. The concurrent long-term administration of antibiotics and anticoagulants to address these complications have been demonstrated to cause severe side effects such as antibiotic resistance and bleeding. To mitigate these complications with minimal or no drug utilization, we developed a bioinspired zwitterionic block polymer-armored nitric oxide (NO)-generating functional coating for surface modification of CVCs. This armor was fabricated by precoating with a Cu-dopamine (DA)/selenocysteamine (SeCA) (Cu-DA/SeCA) network film capable of catalytically generating NO on the CVCs surface, followed by grafting of a zwitterionic p(DMA-b-MPC-b-DMA) polymer brush. The synergistic effects of active attack by NO and copper ions provided by Cu-DA/SeCA network and passive defense by zwitterionic polymer brush imparted the CVCs surface with durable antimicrobial properties and marked inhibition of platelets and fibrinogen. The in vivo studies confirmed that the surface-armored CVCs could effectively reduce inflammation and inhibit thrombosis, indicating a promising potential for clinical applications.

6.
Bioact Mater ; 32: 37-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37810990

RESUMO

Proteins, cells and bacteria adhering to the surface of medical devices can lead to thrombosis and infection, resulting in significant clinical mortality. Here, we report a zwitterionic polymers-armored amyloid-like protein surface engineering strategy we called as "armored-tank" strategy for dual functionalization of medical devices. The "armored-tank" strategy is realized by decoration of partially conformational transformed LZM (PCTL) assembly through oxidant-mediated process, followed by armoring with super-hydrophilic poly-2-methacryloyloxyethyl phosphorylcholine (pMPC). The outer armor of the "armored-tank" shows potent and durable zone defense against fibrinogen, platelet and bacteria adhesion, leading to long-term antithrombogenic properties over 14 days in vivo without anticoagulation. Additionally, the "fired" PCTL from "armored-tank" actively and effectively kills both Gram-positive and Gram-negative bacterial over 30 days as a supplement to the lacking bactericidal functions of passive outer armor. Overall, this "armored-tank" surface engineering strategy serves as a promising solution for preventing biofouling and thrombotic occlusion of medical devices.

7.
Adv Sci (Weinh) ; 11(17): e2310259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424734

RESUMO

Universal protein coatings have recently gained wide interest in medical applications due to their biocompatibility and ease of fabrication. However, the challenge persists in protein activity preservation, significantly complicating the functional design of these coatings. Herein, an active dual-protein surface engineering strategy assisted by a facile stepwise protein-protein interactions assembly (SPPIA) method for catheters to reduce clot formation and infection is proposed. This strategy is realized first by the partial oxidation of bovine serum albumin (BSA) and lysozyme (LZM) for creating stable nucleation platforms via hydrophobic interaction, followed by the assembly of nonoxidized BSA (pI, the isoelectric point, ≈4.7) and LZM (pI ≈11) through electrostatic interaction owing to their opposite charge under neutral conditions. The SPPIA method effectively preserves the conformation and functionality of both BSA and LZM, thus endowing the resultant coating with potent antithrombotic and bactericidal properties. Furthermore, the stable nucleation platform ensures the adhesion and durability of the coating, resisting thrombosis and bacterial proliferation even after 15 days of PBS immersion. Overall, the SPPIA approach not only provides a new strategy for the fabrication of active protein coatings but also shows promise for the surface engineering technology of catheters.


Assuntos
Materiais Revestidos Biocompatíveis , Muramidase , Soroalbumina Bovina , Trombose , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Trombose/metabolismo , Trombose/prevenção & controle , Animais , Materiais Revestidos Biocompatíveis/química , Muramidase/química , Propriedades de Superfície , Humanos , Interações Hidrofóbicas e Hidrofílicas
8.
Innovation (Camb) ; 5(5): 100671, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39114479

RESUMO

Universal coatings with versatile surface adhesion, good mechanochemical robustness, and the capacity for secondary modification are of great scientific interest. However, incorporating these advantages into a system is still a great challenge. Here, we report a series of catechol-decorated polyallylamines (CPAs), denoted as pseudo-Mytilus edulis foot protein 5 (pseudo-Mefp-5), that mimic not only the catechol and amine groups but also the backbone of Mefp-5. CPAs can fabricate highly adhesive, robust, multifunctional polyCPA (PCPA) coatings based on synergetic catechol-polyamine chemistry as universal building blocks. Due to the interpenetrating entangled network architectures, these coatings exhibit high chemical robustness against harsh conditions (HCl, pH 1; NaOH, pH 14; H2O2, 30%), good mechanical robustness, and wear resistance. In addition, PCPA coatings provide abundant grafting sites, enabling the fabrication of various functional surfaces through secondary modification. Furthermore, the versatility, multifaceted robustness, and scalability of PCPA coatings indicate their great potential for surface engineering, especially for withstanding harsh conditions in multipurpose biomedical applications.

9.
Bioact Mater ; 33: 562-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38162514

RESUMO

Thrombus formation and tissue embedding significantly impair the clinical efficacy and retrievability of temporary interventional medical devices. Herein, we report an insect sclerotization-inspired antifouling armor for tailoring temporary interventional devices with durable resistance to protein adsorption and the following protein-mediated complications. By mimicking the phenol-polyamine chemistry assisted by phenol oxidases during sclerotization, we develop a facile one-step method to crosslink bovine serum albumin (BSA) with oxidized hydrocaffeic acid (HCA), resulting in a stable and universal BSA@HCA armor. Furthermore, the surface of the BSA@HCA armor, enriched with carboxyl groups, supports the secondary grafting of polyethylene glycol (PEG), further enhancing both its antifouling performance and durability. The synergy of robustly immobilized BSA and covalently grafted PEG provide potent resistance to the adhesion of proteins, platelets, and vascular cells in vitro. In ex vivo blood circulation experiment, the armored surface reduces thrombus formation by 95 %. Moreover, the antifouling armor retained over 60 % of its fouling resistance after 28 days of immersion in PBS. Overall, our armor engineering strategy presents a promising solution for enhancing the antifouling properties and clinical performance of temporary interventional medical devices.

10.
Biomaterials ; 304: 122427, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100906

RESUMO

Protein and cell adhesion on temporary intravascular devices can lead to thrombosis and tissue embedment, significantly increasing complications and device retrieval difficulties. Here, we propose an endothelial glycocalyx-inspired dynamic antifouling surface strategy for indwelling catheters and retrievable vascular filters to prevent thrombosis and suppress intimal embedment. This strategy is realized on the surfaces of substrates by the intensely dense grafting of hydrolyzable endothelial polysaccharide hyaluronic acid (HA), assisted by an amine-rich phenol-polyamine universal platform. The resultant super-hydrophilic surface exhibits potent antifouling property against proteins and cells. Additionally, the HA hydrolysis induces continuous degradation of the coating, enabling removal of inevitable biofouling on the surface. Moreover, the dense grafting of HA also ensures the medium-term effectiveness of this dynamic antifouling surface. The coated catheters maintain a superior anti-thrombosis capacity in ex vivo blood circulation after 30 days immersion. In the abdominal veins of rats, the coated implants show inhibitory effects on intimal embedment up to 2 months. Overall, we envision that this glycocalyx-inspired dynamic antifouling surface strategy could be a promising surface engineering technology for temporary intravascular devices.


Assuntos
Incrustação Biológica , Trombose , Ratos , Animais , Incrustação Biológica/prevenção & controle , Proteínas , Ácido Hialurônico/química , Interações Hidrofóbicas e Hidrofílicas , Trombose/prevenção & controle , Propriedades de Superfície
11.
Bioact Mater ; 37: 493-504, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38698921

RESUMO

Thrombosis and infection are two major complications associated with central venous catheters (CVCs), which significantly contribute to morbidity and mortality. Antifouling coating strategies currently represent an efficient approach for addressing such complications. However, existing antifouling coatings have limitations in terms of both duration and effectiveness. Herein, we propose a durable zwitterionic polymer armor for catheters. This armor is realized by pre-coating with a robust phenol-polyamine film inspired by insect sclerotization, followed by grafting of poly-2-methacryloyloxyethyl phosphorylcholine (pMPC) via in-situ radical polymerization. The resulting pMPC coating armor exhibits super-hydrophilicity, thereby forming a highly hydrated shell that effectively prevents bacterial adhesion and inhibits the adsorption and activation of fibrinogen and platelets in vitro. In practical applications, the armored catheters significantly reduced inflammation and prevented biofilm formation in a rat subcutaneous infection model, as well as inhibited thrombus formation in a rabbit jugular vein model. Overall, our robust zwitterionic polymer coating presents a promising solution for reducing infections and thrombosis associated with vascular catheters.

12.
Bioact Mater ; 42: 270-283, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39285916

RESUMO

Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in heart failure (HF) treatment. However, their clinical application is impeded by low retention rate and low cellular activity of MSCs caused by high inflammatory and reactive oxygen species (ROS) microenvironment. In this study, monascus pigment (MP) nanoparticle (PPM) was proposed for improving adverse microenvironment and assisting in transplantation of bone marrow-derived MSCs (BMSCs). Meanwhile, in order to load PPM and reduce the mechanical damage of BMSCs, injectable hydrogels based on Schiff base cross-linking were prepared. The PPM displays ROS-scavenging and macrophage phenotype-regulating capabilities, significantly enhancing BMSCs survival and activity in HF microenvironment. This hydrogel demonstrates superior biocompatibility, injectability, and tissue adhesion. With the synergistic effects of injectable, adhesive hydrogel and the microenvironment-modulating properties of MP, cardiac function was effectively improved in the pericardial sac of rats. Our results offer insights into advancing BMSCs-based HF therapies and their clinical applications.

13.
Sci Rep ; 13(1): 5660, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024558

RESUMO

Phosphorus (P) deficiencies are widespread in calcareous soils. The poor availability of nitrogen (N) and P in soils often restricts crop growth. However, the effects of P addition on plant growth and plant nutrient transport changes during the establishment of Leymus chinensis fields in Xinjiang are not clear. We investigated the responses of Leymus chinensis biomass and nutrient absorption and utilization to changes in soil N and P by adding P (0, 15.3, 30.6, and 45.9 kg P ha-1 year-1) with basally applied N fertilizer (150 kg N ha-1 year-1). The results showed that (a) Principal component analysis (PCA) of biomass, nutrient accumulation, soil available P, and soil available N during the different periods of Leymus chinensis growth showed that their cumulative contributions during the jointing and harvest periods reached 95.4% and 88%, respectively. (b) Phosphorus use efficiency (PUE) increased with the increase of P fertilizer gradient and then decreased and the maximum PUE was 13.14% under moderate P addition. The accumulation of biomass and nutrients in Leymus chinensis can be effectively improved by the addition of P fertilizer at 30.6 kg ha-1. Different P additions either moderately promoted or excessively inhibited Leymus chinensis growth and nutrient utilization.


Assuntos
Fertilizantes , Fósforo , Biomassa , Fósforo/farmacologia , Poaceae , Nutrientes , Nitrogênio/farmacologia , Solo
14.
Bioengineering (Basel) ; 10(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002419

RESUMO

Cystic lesions are common lesions of the sellar region with various pathological types, including pituitary apoplexy, Rathke's cleft cyst, cystic craniopharyngioma, etc. Suggested surgical approaches are not unique when dealing with different cystic lesions. However, cystic lesions with different pathological types were hard to differentiate on MRI with the naked eye by doctors. This study aimed to distinguish different pathological types of cystic lesions in the sellar region using preoperative magnetic resonance imaging (MRI). Radiomics and deep learning approaches were used to extract features from gadolinium-enhanced MRIs of 399 patients enrolled at Peking Union Medical College Hospital over the past 15 years. Paired imaging differentiations were performed on four subtypes, including pituitary apoplexy, cystic pituitary adenoma (cysticA), Rathke's cleft cyst, and cystic craniopharyngioma. Results showed that the model achieved an average AUC value of 0.7685. The model based on a support vector machine could distinguish cystic craniopharyngioma from Rathke's cleft cyst with the highest AUC value of 0.8584. However, distinguishing cystic apoplexy from pituitary apoplexy was difficult and almost unclassifiable with any algorithms on any feature set, with the AUC value being only 0.6641. Finally, the proposed methods achieved an average Accuracy of 0.7532, which outperformed the traditional clinical knowledge-based method by about 8%. Therefore, in this study, we first fill the gap in the existing literature and provide a non-invasive method for accurately differentiating between these lesions, which could improve preoperative diagnosis accuracy and help to make surgery plans in clinical work.

15.
Biomater Adv ; 153: 213536, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418934

RESUMO

Zn and its alloys are receiving increasing interest for biodegradable orthopedic implant applications owing to their moderate corrosion rate and the potential functionality of Zn2+. However, their non-uniform corrosion behavior and insufficient osteogenic, anti-inflammatory, and antibacterial properties do not meet the comprehensive requirements of orthopedic implants in clinical use. Herein, an aspirin (an acetylsalicylic acid, ASA, 10, 50, 100, and 500 mg/L)-loaded carboxymethyl chitosan (CMC)/gelatin (Gel)-Zn2+ organometallic hydrogel composite coating (CMC/Gel&Zn2+/ASA) was fabricated on a Zn surface via an alternating dip-coating method, aiming to obtain a material with these comprehensive properties improved. The organometallic hydrogel composite coatings, ca. 12-16 µm in thickness, showed compact, homogeneous, and micro-bulge structured surface morphology. The coatings protected well the Zn substrate from pitting/localized corrosion and contained the release of the bioactive components, Zn2+ and ASA, in a sustained and stable manner in long-term in vitro immersions in Hank's solution. The coated Zn showed greater ability to promote proliferation and osteogenic differentiation for MC3T3-E1 osteoblasts, and better anti-inflammatory capacity when compared with uncoated Zn. Additionally, this coating displayed excellent antibacterial activity against both Escherichia coli (>99 % antibacterial rate) and Staphylococcus aureus (>98 % antibacterial rate). Such appealing properties can be attributed to the compositional nature of the coating, namely the sustained release of Zn2+ and ASA, as well as the surface physiochemical properties because of its unique microstructure. This organometallic hydrogel composite coating can be considered a promising option for the surface modification of biodegradable Zn-based orthopedic implants among others.


Assuntos
Hidrogéis , Osteogênese , Corrosão , Hidrogéis/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Linhagem Celular , Implantes Absorvíveis , Aspirina , Anti-Inflamatórios , Antibacterianos/farmacologia , Escherichia coli , Gelatina/farmacologia , Zinco/farmacologia
16.
Bioact Mater ; 25: 223-238, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36817823

RESUMO

Control of premature corrosion of magnesium (Mg) alloy bioresorbable stents (BRS) is frequently achieved by the addition of rare earth elements. However, limited long-term experience with these elements causes concerns for clinical application and alternative methods of corrosion control are sought after. Herein, we report a "built-up" composite film consisting of a bottom layer of MgF2 conversion coating, a sandwich layer of a poly (1, 3-trimethylene carbonate) (PTMC) and 3-aminopropyl triethoxysilane (APTES) co-spray coating (PA) and on top a layer of poly (lactic-co-glycolic acid) (PLGA) ultrasonic spray coating to decorate the rare earth element-free Mg-2Zn-1Mn (ZM21) BRS for tailoring both corrosion resistance and biological functions. The developed "built-up" composite film shows synergistic functionalities, allowing the compression and expansion of the coated ZM21 BRS on an angioplasty balloon without cracking or peeling. Of special importance is that the synergistic corrosion control effects of the "built-up" composite film allow for maintaining the mechanical integrity of stents for up to 3 months, where complete biodegradation and no foreign matter residue were observed about half a year after implantation in rabbit iliac arteries. Moreover, the functionalized ZM21 BRS accomplished re-endothelialization within one month.

17.
Front Endocrinol (Lausanne) ; 14: 1089190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860369

RESUMO

Objective: COVID-19 infection may affect thyroid function. However, changes in thyroid function in COVID-19 patients have not been well described. This systematic review and meta-analysis assess thyroxine levels in COVID-19 patients, compared with non-COVID-19 pneumonia and healthy cohorts during the COVID-19 epidemic. Methods: A search was performed in English and Chinese databases from inception to August 1, 2022. The primary analysis assessed thyroid function in COVID-19 patients, comparing non-COVID-19 pneumonia and healthy cohorts. Secondary outcomes included different severity and prognoses of COVID-19 patients. Results: A total of 5873 patients were enrolled in the study. The pooled estimates of TSH and FT3 were significantly lower in patients with COVID-19 and non-COVID-19 pneumonia than in the healthy cohort (P < 0.001), whereas FT4 were significantly higher (P < 0.001). Patients with the non-severe COVID-19 showed significant higher in TSH levels than the severe (I2 = 89.9%, P = 0.002) and FT3 (I2 = 91.9%, P < 0.001). Standard mean differences (SMD) of TSH, FT3, and FT4 levels of survivors and non-survivors were 0.29 (P= 0.006), 1.11 (P < 0.001), and 0.22 (P < 0.001). For ICU patients, the survivors had significantly higher FT4 (SMD=0.47, P=0.003) and FT3 (SMD=0.51, P=0.001) than non-survivors. Conclusions: Compared with the healthy cohort, COVID-19 patients showed decreased TSH and FT3 and increased FT4, similar to non-COVID-19 pneumonia. Thyroid function changes were related to the severity of COVID-19. Thyroxine levels have clinical significance for prognosis evaluation, especially FT3.


Assuntos
COVID-19 , Tiroxina , Humanos , COVID-19/epidemiologia , Pandemias , Tireotropina/sangue , Tiroxina/sangue
18.
Acta Biomater ; 166: 685-704, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37196904

RESUMO

Zn and its alloys are increasingly under consideration for biodegradable bone fracture fixation implants owing to their attractive biodegradability and mechanical properties. However, their clinical application is a challenge for osteoporotic bone fracture healing, due to their uneven degradation mode, burst release of zinc ions, and insufficient osteo-promotion and osteo-resorption regulating properties. In this study, a type of Zn2+ coordinated zoledronic acid (ZA) and 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) metal-organic hybrid nanostick was synthesized, which was further mixed into zinc phosphate (ZnP) solution to mediate the deposition and growth of ZnP to form a well-integrated micro-patterned metal-organic/inorganic hybrid coating on Zn. The coating protected noticeably the Zn substrate from corrosion, in particular reducing its localized occurrence as well as suppressing its Zn2+ release. Moreover, the modified Zn was osteo-compatible and osteo-promotive and, more important, performed osteogenesis in vitro and in vivo of well-balanced pro-osteoblast and anti-osteoclast responses. Such favorable functionalities are related to the nature of its bioactive components, especially the bio-functional ZA and the Zn ions it contains, as well as its unique micro- and nano-scale structure. This strategy provides not only a new avenue for surface modification of biodegradable metals but also sheds light on advanced biomaterials for osteoporotic fracture and other applications. STATEMENT OF SIGNIFICANCE: Developing appropriate biodegradable metallic materials is of clinical relevance for osteoporosis fracture healing, whereas current strategies are short of good balance between the bone formation and resorption. Here, we designed a micropatterned metal-organic nanostick mediated zinc phosphate hybrid coating modified Zn biodegradable metal to fulfill such a balanced osteogenicity. The in vitro assays verified the coated Zn demonstrated outstanding pro-osteoblasts and anti-osteoclasts properties and the coated intramedullary nail promoted fracture healing well in an osteoporotic femur fracture rat model. Our strategy may offer not only a new avenue for surface modification of biodegradable metals but also shed light on better understanding of new advanced biomaterials for orthopedic application among others.


Assuntos
Fraturas por Osteoporose , Ratos , Animais , Ácido Zoledrônico , Fraturas por Osteoporose/tratamento farmacológico , Fraturas por Osteoporose/cirurgia , Materiais Biocompatíveis/química , Fosfatos , Ligas/farmacologia , Ligas/química , Zinco/farmacologia , Implantes Absorvíveis , Corrosão , Teste de Materiais
19.
Front Oncol ; 13: 1218897, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264759

RESUMO

Purpose: No multi-center radiomics models have been built to predict delayed remission (DR) after transsphenoidal surgery (TSS) in Cushing's disease (CD). The present study aims to build clinical and radiomics models based on data from three centers to predict DR after TSS in CD. Methods: A total of 122 CD patients from Peking Union Medical College Hospital, Xuanwu Hospital, and Fuzhou General Hospital were enrolled between January 2000 and January 2019. The T1-weighted gadolinium-enhanced MRI images and clinical data were used as inputs to build clinical and radiomics models. The regions of interest (ROI) of MRI images were automatically defined by a deep learning algorithm developed by our team. The area under the curve (AUC) of receiver operating characteristic (ROC) curves was used to evaluate the performance of the models. In total, 10 machine learning algorithms were used to construct models. Results: The overall DR rate is 44.3% (54/122). According to multivariate Logistic regression analysis, patients with higher BMI and lower postoperative cortisol levels are more likely to achieve a higher rate of delayed remission. Among the 10 models, XGBoost achieved the best performance among all models in both clinical and radiomics models with AUC values of 0.767 and 0.819 respectively. The results from SHAP value and LIME algorithms revealed that postoperative cortisol level (PoC) and BMI were the most important features associated with DR. Conclusion: Radiomics models can be built as an effective noninvasive method to predict DR and might be useful in assisting neurosurgeons in making therapeutic plans after TSS for CD patients. These results are preliminary and further validation in a larger patient sample is needed.

20.
Research (Wash D C) ; 2022: 9780879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35515702

RESUMO

Thrombosis and infections are the two major complications associated with extracorporeal circuits and indwelling medical devices, leading to significant mortality in clinic. To address this issue, here, we report a biomimetic surface engineering strategy by the integration of mussel-inspired adhesive peptide, with bio-orthogonal click chemistry, to tailor the surface functionalities of tubing and catheters. Inspired by mussel adhesive foot protein, a bioclickable peptide mimic (DOPA)4-azide-based structure is designed and grafted on an aminated tubing robustly based on catechol-amine chemistry. Then, the dibenzylcyclooctyne (DBCO) modified nitric oxide generating species of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated copper ions and the DBCO-modified antimicrobial peptide (DBCO-AMP) are clicked onto the grafted surfaces via bio-orthogonal reaction. The combination of the robustly grafted AMP and Cu-DOTA endows the modified tubing with durable antimicrobial properties and ability in long-term catalytically generating NO from endogenous s-nitrosothiols to resist adhesion/activation of platelets, thus preventing the formation of thrombosis. Overall, this biomimetic surface engineering technology provides a promising solution for multicomponent surface functionalization and the surface bioengineering of biomedical devices with enhanced clinical performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA