Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 194(4): 2434-2448, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38214208

RESUMO

Cereal endosperm represents the most important source of the world's food. Nevertheless, the molecular mechanisms behind sugar import into rice (Oryza sativa) endosperm and their relationship with auxin signaling are poorly understood. Here, we report that auxin transport inhibitor response 1 (TIR1) plays an essential role in rice grain yield and quality via modulating sugar transport into endosperm. The fluctuations of OsTIR1 transcripts parallel to the early stage of grain expansion among those of the 5 TIR1/AFB (auxin-signaling F-box) auxin co-receptor proteins. OsTIR1 is abundantly expressed in ovular vascular trace, nucellar projection, nucellar epidermis, aleurone layer cells, and endosperm, providing a potential path for sugar into the endosperm. Compared to wild-type (WT) plants, starch accumulation is repressed by mutation of OsTIR1 and improved by overexpression of the gene, ultimately leading to reduced grain yield and quality in tir1 mutants but improvement in overexpression lines. Of the rice AUXIN RESPONSE FACTOR (ARF) genes, only the OsARF25 transcript is repressed in tir1 mutants and enhanced by overexpression of OsTIR1; its highest transcript is recorded at 10 d after fertilization, consistent with OsTIR1 expression. Also, OsARF25 can bind the promoter of the sugar transporter OsSWEET11 (SWEET, sugars will eventually be exported transporter) in vivo and in vitro. arf25 and arf25/sweet11 mutants exhibit reduced starch content and seed size (relative to the WTs), similar to tir1 mutants. Our data reveal that OsTIR1 mediates sugar import into endosperm via the auxin signaling component OsARF25 interacting with sugar transporter OsSWEET11. The results of this study are of great significance to further clarify the regulatory mechanism of auxin signaling on grain development in rice.


Assuntos
Oryza , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Endosperma/metabolismo , Grão Comestível/metabolismo , Amido/metabolismo , Ácidos Indolacéticos/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas
2.
FASEB J ; 38(7): e23534, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597911

RESUMO

Satellite cells (SCs) are adult muscle stem cells responsible for muscle regeneration after acute and chronic muscle injuries. The balance between stem cell self-renewal and differentiation determines the kinetics and efficiency of skeletal muscle regeneration. This study assessed the function of Islr in SC asymmetric division. The deletion of Islr reduced muscle regeneration in adult mice by decreasing the SC pool. Islr is pivotal for SC proliferation, and its deletion promoted the asymmetric division of SCs. A mechanistic search revealed that Islr bound to and degraded secreted protein acidic and rich in cysteine (SPARC), which activated p-ERK1/2 signaling required for asymmetric division. These findings demonstrate that Islr is a key regulator of SC division through the SPARC/p-ERK1/2 signaling pathway. These data provide a basis for treating myopathy.


Assuntos
Sistema de Sinalização das MAP Quinases , Osteonectina , Animais , Camundongos , Divisão Celular Assimétrica , Diferenciação Celular , Osteonectina/genética , Transdução de Sinais
3.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847360

RESUMO

In laser-based additive manufacturing (AM), porosity and unmelted metal powder are typically considered undesirable and harmful. Nevertheless in this work, precisely controlling laser parameters during printing can intentionally introduce controllable porosity, yielding a porous electrode with enhanced catalytic activity for the oxygen evolution reaction (OER). This study demonstrates that deliberate introduction of porosity, typically considered a defect, leads to improved gas molecule desorption, enhanced mass transfer, and increased catalytically active sites. The optimized P-93% electrode displays superior OER performance with an overpotential of 270 mV at 20 mA cm-2. Furthermore, it exhibits remarkable long-term stability, operating continuously for over 1000 h at 10 mA cm-2 and more than 500 h at 500 mA cm-2. This study not only provides a straightforward and mass-producible method for efficient, binder-free OER catalysts but also, if optimized, underscores the potential of laser-based AM driven defect engineering as a promising strategy for industrial water splitting.

4.
J Hepatol ; 80(5): 714-729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336348

RESUMO

BACKGROUND & AIMS: Mechanisms behind the impaired response of antigen-specific B cells to therapeutic vaccination in chronic hepatitis B virus (HBV) infection remain unclear. The development of vaccines or strategies to overcome this obstacle is vital for advancing the management of chronic hepatitis B. METHODS: A mouse model, denominated as E6F6-B, was engineered to feature a knock-in of a B-cell receptor (BCR) that specifically recognizes HBsAg. This model served as a valuable tool for investigating the temporal and spatial dynamics of humoral responses following therapeutic vaccination under continuous antigen exposure. Using a suite of immunological techniques, we elucidated the differentiation trajectory of HBsAg-specific B cells post-therapeutic vaccination in HBV carrier mice. RESULTS: Utilizing the E6F6-B transfer model, we observed a marked decline in antibody-secreting cells 2 weeks after vaccination. A dysfunctional and atypical pre-plasma cell population (BLIMP-1+ IRF4+ CD40- CD138- BCMA-) emerged, manifested by sustained BCR signaling. By deploying an antibody to purge persistent HBsAg, we effectively prompted the therapeutic vaccine to provoke conventional plasma cell differentiation. This resulted in an enhanced anti-HBs antibody response and facilitated HBsAg clearance. CONCLUSIONS: Sustained high levels of HBsAg limit the ability of therapeutic hepatitis B vaccines to induce the canonical plasma cell differentiation necessary for anti-HBs antibody production. Employing a strategy combining antibodies with vaccines can surmount this altered humoral response associated with atypical pre-plasma cells, leading to improved therapeutic efficacy in HBV carrier mice. IMPACT AND IMPLICATIONS: Therapeutic vaccines aimed at combatting HBV encounter suboptimal humoral responses in clinical settings, and the mechanisms impeding their effectiveness have remained obscure. Our research, utilizing the innovative E6F6-B mouse transfer model, reveals that the persistence of HBsAg can lead to the emergence of an atypical pre-plasma cell population, which proves to be relevant to the potency of therapeutic HBV vaccines. Targeting the aberrant differentiation process of these atypical pre-plasma cells stands out as a critical strategy to amplify the humoral response elicited by HBV therapeutic vaccines in carrier mouse models. This discovery suggests a compelling avenue for further study in the context of human chronic hepatitis B. Encouragingly, our findings indicate that synergistic therapy combining HBV-specific antibodies with vaccines offers a promising approach that could significantly advance the pursuit of a functional cure for HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Humanos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Vacinas contra Hepatite B/uso terapêutico , Anticorpos Anti-Hepatite B , Diferenciação Celular , Hepatite B/prevenção & controle , Hepatite B/tratamento farmacológico
5.
Anal Chem ; 96(4): 1750-1758, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215439

RESUMO

Inertial microfluidics has demonstrated its ability to focus particles in a passive and straightforward manner. However, achieving flow-rate- and particle-size-insensitive focusing in large-dimension channels with a simple design remains challenging. In this study, we developed a spiral microfluidic with a large-dimension channel to achieve inertial focusing. By designing a unique "big buffering area" and a "small buffering area" in the spiral microchannel, we observed the stabilization and acceleration of secondary flow. Our optimized design allowed for efficient (>99.9%) focusing of 15 µm particles within a wide range of flow rates (0.5-4.5 mL/min) during a long operation duration (0-60 min). Additionally, we achieved effective (>95%) focusing of different-sized particles (7, 10, 15, and 30 µm) and three types of tumor cells (K562, HeLa, and MCF-7) near the inner wall of the 1 mm wide outlet when applying different flow rates (1-3 mL/min). Finally, successful 3D cell focusing was achieved within an optimized device, with the cells positioned at a distance of 50 µm from the wall. Our strategy of stabilizing and accelerating Dean-like secondary flow through the unique configuration of a "big buffering area" and a "small buffering area" proved to be highly effective in achieving inertial focusing that is insensitive to the flow rate and particle size, particularly in large-dimension channels. Consequently, it shows great potential for use in hand-operated microfluidic tools for flow cytometry.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Microfluídica/métodos , Tamanho da Partícula , Citometria de Fluxo/métodos , Aceleração
6.
Small ; 20(5): e2305316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37661568

RESUMO

Hierarchically porous carbons with tailor-made properties are essential for applications wherein rich active sites and fast mass transfer are required. Herein, a rapid aerosol-confined salt/surfactant templating approach is proposed for synthesizing hierarchically porous carbon microspheres (HPCMs) with a maze-like structure and large mesopore tunnels for high-performance tri-phase catalytic ozonation. The confined assembly in drying microdroplets is crucial for coherent salt (NaCl) and surfactant (F127) dual templating without macroscopic phase separation. The HPCMs possess tunable sizes, a maze-like structure with highly open macropores (0.3-30 µm) templated from NaCl crystal arrays, large intrawall mesopore tunnels (10-45 nm) templated from F127, and rich micropores (surface area >1000 m2 g-1 ) and oxygen heteroatoms originated from NaCl-confined carbonization of phenolic resin. The structure formation mechanism of the HPCMs and several influencing factors on properties are elaborated. The HPCMs exhibit superior performance in gas-liquid-solid tri-phase catalytic ozonation for oxalate degradation, owing to their hierarchical pore structure for fast mass transfer and rich defects and oxygen-containing groups (especially carbonyl) for efficient O3 activation. The reactive oxygen species responsible for oxalate degradation and the influences of several structure parameters on performance are discussed. This work may provide a platform for producing hierarchically porous materials for various applications.

7.
Small ; 20(26): e2309114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233203

RESUMO

Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles. The two components at various ZSM-5/AlSBA-15 mass ratios are uniformly mixed with chemically bonded pore walls, interconnected pores, and eliminated external surfaces of nanosized ZSM-5. The typical composite with a ZSM-5/AlSBA-15 mass ratio of 0.25 shows superior performance in TIPB cracking with outstanding activity (≈100% conversion) and deep cracking selectivity (mass of propylene + benzene > 60%) maintained for a long time (> 6 h) under a high TIPB flux (2 mL h-1), far better (several to tens of times higher) than the single-component and physically mixed catalysts and superior to literature results. The high performance is attributed to the cooperative tandem catalytic process, that is, selective and timely pre-cracking of TIPB to isopropylbenzene (IPB) in AlSBA-15 and subsequently timely diffusion and deep cracking of IPB in nanosized ZSM-5.

8.
Small ; 20(13): e2304150, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37964398

RESUMO

Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.


Assuntos
Antirreumáticos , Artrite Reumatoide , Cromonas , Nanopartículas , Sulfonamidas , Humanos , Álcool de Polivinil , Artrite Reumatoide/tratamento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Água
9.
J Virol ; 97(2): e0168422, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651747

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is becoming a dominant circulator and has several mutations in the spike glycoprotein, which may cause shifts of immunogenicity, so as to result in immune escape and breakthrough infection among the already infected or vaccinated populations. It is unclear whether infection with Omicron could generate adequate cross-variant protection. To investigate this possibility, we used Syrian hamsters as an animal model for infection of SARS-CoV-2. The serum from Omicron BA.1 variant-infected hamsters showed a significantly lower neutralization effect against infection of the same or different SARS-CoV-2 variants than the serum from Beta variant-infected hamsters. Furthermore, the serum from Omicron BA.1 variant-infected hamsters were insufficient to protect against rechallenge of SARS-CoV-2 Prototype, Beta and Delta variants and itself. Importantly, we found that rechallenge with different SARS-CoV-2 lineages elevated cross-variant serum neutralization titers. Overall, our findings indicate a weakened immunogenicity feature of Omicron BA.1 variant that can be overcome by rechallenge of a different SARS-CoV-2 lineages. Our results may lead to a new guideline in generation and use of the vaccinations to combat the pandemic of SARS-CoV-2 Omicron variant and possible new variants. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant causes breakthrough infections among convalescent patients and vaccinated populations. However, Omicron does not generate robust cross-protective responses. Here, we investigate whether heterologous SARS-CoV-2 challenge is able to enhance antibody response in a sensitive animal model, namely, Syrian hamster. Of note, a heterologous challenge of Beta and Omicron BA.1 variant significantly broadens the breadth of SARS-CoV-2 neutralizing responses against the prototype, Beta, Delta, and Omicron BA.1 variants. Our findings confirm that vaccination strategy with heterologous antigens might be a good option to protect against the evolving SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Heterófilos/imunologia , Infecções Irruptivas , COVID-19/prevenção & controle , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
10.
J Virol ; 97(11): e0113723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855619

RESUMO

IMPORTANCE: The ongoing COVID-19 pandemic has been characterized by the emergence of new SARS-CoV-2 variants including the highly transmissible Omicron XBB sublineages, which have shown significant resistance to neutralizing antibodies (nAbs). This resistance has led to decreased vaccine effectiveness and therefore result in breakthrough infections and reinfections, which continuously threaten public health. To date, almost all available therapeutic nAbs, including those authorized under Emergency Use Authorization nAbs that were previously clinically useful against early strains, have recently been found to be ineffective against newly emerging variants. In this study, we provide a comprehensive structural basis about how the Class 3 nAbs, including 1G11 in this study and noted LY-CoV1404, are evaded by the newly emerged SARS-CoV-2 variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Pandemias , Humanos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , Infecções Irruptivas , COVID-19/imunologia , COVID-19/virologia
11.
BMC Microbiol ; 24(1): 36, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279164

RESUMO

BACKGROUND: Patients with diabetic feet are prone to be infected due to the impaired immune system. However, the prognostic outcome of different microbial infections remains controversial. Identification and rapid screening of the pathogenic microorganisms that pose the greatest threat to the prognosis of patients with diabetic foot infections (DFIs) is critical. METHODS: Clinical data were statistically analyzed, which were obtained from 522 patients with DFIs, including pathogenic bacterial culture results and treatment outcomes at the last return visit. In addition, a loop-mediated isothermal amplification (LAMP) detection method was developed to identify the prevalent subtype of methicillin-resistant Staphylococcus aureus (MRSA) in DFIs patients. This study was approved by the Ethics Committee of Nanfang Hospital (NFEC-202012-K6) and registered on ClinicalTrials.gov (NCT04916457) on June 1, 2021. RESULTS: We found that the proportion of patients with infections of Staphylococcus aureus (S. aureus) and MRSA was 27.7% (145/522) and 33.7% (49/145), respectively. Additionally, the incidence of osteomyelitis was 46.9% (23/49) and amputation/disability was 40.8% (20/49) in patients with MRSA infection, which were significantly higher compared to patients with other types of bacterial infections such as methicillin-susceptible Staphylococcus aureus (MSSA). Notably, we demonstrated that the main prevalent subtype of MRSA in DFIs patients in our hospital was Staphylococcal chromosomal cassettes mec (SCCmec) type II. In addition, it only takes 1.5 h to complete the entire experimental procedure in this LAMP assay, providing high sensitivity (100%) and specificity (77.8%) in hospitalized patients with DFIs. CONCLUSIONS: We demonstrated there is a very high rate of MRSA isolation in patients with DFIs and revealed that patients infected with MRSA are at a higher risk of developing osteomyelitis, and amputation or disability. Importantly, we have developed a method for quickly screening newly admitted patients for MRSA.


Assuntos
Diabetes Mellitus , Pé Diabético , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Antibacterianos/uso terapêutico , Prevalência , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana , Diabetes Mellitus/tratamento farmacológico
12.
New Phytol ; 242(4): 1798-1813, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38155454

RESUMO

It is well understood that agricultural management influences arbuscular mycorrhizal (AM) fungi, but there is controversy about whether farmers should manage for AM symbiosis. We assessed AM fungal communities colonizing wheat roots for three consecutive years in a long-term (> 14 yr) tillage and fertilization experiment. Relationships among mycorrhizas, crop performance, and soil ecosystem functions were quantified. Tillage, fertilizers and continuous monoculture all reduced AM fungal richness and shifted community composition toward dominance of a few ruderal taxa. Rhizophagus and Dominikia were depressed by tillage and/or fertilization, and their abundances as well as AM fungal richness correlated positively with soil aggregate stability and nutrient cycling functions across all or no-tilled samples. In the field, wheat yield was unrelated to AM fungal abundance and correlated negatively with AM fungal richness. In a complementary glasshouse study, wheat biomass was enhanced by soil inoculum from unfertilized, no-till plots while neutral to depressed growth was observed in wheat inoculated with soils from fertilized and conventionally tilled plots. This study demonstrates contrasting impacts of low-input and conventional agricultural practices on AM symbiosis and highlights the importance of considering both crop yield and soil ecosystem functions when managing mycorrhizas for more sustainable agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Fertilizantes , Micorrizas , Microbiologia do Solo , Solo , Triticum , Micorrizas/fisiologia , Solo/química , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/fisiologia , Produtos Agrícolas/microbiologia , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura/métodos , Biomassa , Raízes de Plantas/microbiologia , Fatores de Tempo , Biodiversidade
13.
Plant Physiol ; 191(3): 1771-1788, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36617241

RESUMO

A key function of SUMOylation is the coordinated modification of numerous proteins to optimize plant growth and resistance to environmental stress. Plant cuticular wax is deposited on the surface of primary plant organs to form a barrier that provides protection against changes in terrestrial environments. Many recent studies have examined cuticular wax biosynthetic pathways and regulation. However, whether SUMOylation is involved in the regulation of cuticle wax deposition at the posttranslational level remains unclear. Here, we demonstrate that a small ubiquitin-like modifier (SUMO) E3 ligase, SAP AND MIZ1 DOMAIN CONTAINING LIGASE1 (MdSIZ1), regulates wax accumulation and cuticle permeability in apple (Malus domestica Borkh), SUMO E2 CONJUGATING ENZYME 1(MdSCE1) physically interacts with MdMYB30, a transcription factor involved in the regulation of cuticle wax accumulation. MdSIZ1 mediates the SUMOylation and accumulation of MdMYB30 by inhibiting its degradation through the 26S proteasome pathway. Furthermore, MdMYB30 directly binds to the ß-KETOACYL-COA SYNTHASE 1 (MdKCS1) promoter to activate its expression and promote wax biosynthesis. These findings indicate that the MdSIZ1-MdMYB30-MdKCS1 module positively regulates cuticular wax biosynthesis in apples. Overall, the findings of our study provide insights into the regulation pathways involved in cuticular wax biosynthesis.


Assuntos
Malus , Malus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Regulação da Expressão Gênica de Plantas , Ceras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Opt Express ; 32(9): 15573-15585, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859205

RESUMO

An approach to achieve controllable non-uniformly distributed spiking cluster generation is proposed and demonstrated based on an externally-triggered broadband optoelectronic oscillator (OEO). The theory of controlling the distribution of the spiking pulses in a spiking cluster is established. Based on the theory, the dynamic and the distribution characteristics are analyzed and revealed in the stable spiking oscillation state under different externally-injected trigger signal voltages. The peak-voltage envelop of the cluster and the interval of the spiking pulses are demonstrated to have an approximate negative linearity relationship with the externally-injected trigger signal voltage in both the numerical simulation and the experiment, where a square waveform, a trapezoidal waveform, a parabola waveform, and a half-sinusoidal waveform are used as the externally-injected trigger signals. The results indicate that the spiking pulse distribution in the generated spiking cluster can be well controlled through tuning the externally-injected trigger signal voltage. The proposed scheme can be utilized in spiking encoding and reservoir computing.

15.
Opt Express ; 32(8): 13825-13835, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859342

RESUMO

An approach to generating stable phase-locked dual-frequency microwave signals is proposed and demonstrated based on a dual-passband optoelectronic oscillator (OEO). Mode gain competition is broken by employing frequency mixing mutual injection effect to realize phase locking between the two oscillation signals, which is achieved by applying a single-tone signal to a microwave mixer in the OEO cavity. In addition, a dual-loop configuration with balanced detection is utilized to ensure a high side mode suppression ratio (SMSR) and ultra-low phase noise, which also enhances the stability of the generated signal. In the experiment, a phase-locked dual-frequency microwave signal at 9.9982 GHz and 10.1155 GHz is generated by using the proposed OEO scheme. The SMSR and the phase noise are 75 dB and -141 dBc/Hz@10 kHz, respectively. Additionally, the Allan deviation of the generated signal is in the order of 10-11@1 s. These parameters are superior to those based on the same OEO but with a single-loop configuration, which are also compared in detail.

16.
Toxicol Appl Pharmacol ; 489: 117017, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925513

RESUMO

Liver fibrosis, a progressive process of fibrous scarring, results from the accumulation of extracellular matrix proteins (ECM). If left untreated, it often progresses to diseases such as cirrhosis and hepatocellular carcinoma. Lycorine, a natural alkaloid derived from medicinal plants, has shown diverse bioactivities by targeting JAK2/STAT3 signaling, but its pharmacological effects and potential molecular mechanisms in liver fibrosis remains largely unexplored. The purpose of this study is to elucidate the pharmacological activity and molecular mechanism of lycorine in anti-hepatic fibrosis. Findings indicate that lycorine significantly inhibited hepatic stellate cells (HSCs) activation by reducing the expression of α-SMA and collagen-1. In vivo, lycorine treatment alleviated carbon tetrachloride (CCl4) -induced mice liver fibrosis, improving liver function, decreasing ECM deposition, and inhibiting fibrosis-related markers' expression. Mechanistically, it was found that lycorine exerts protective activity through the JAK2/STAT3 and PI3K/AKT signaling pathways, as evidenced by transcriptome sequencing technology and small molecule inhibitors. These results underscore lycorine's potential as a therapeutic drug for liver fibrosis.

17.
Stem Cells ; 41(3): 287-305, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36617947

RESUMO

Neural crest-like stem cells resembling embryonic neural crest cells (NCs) can be derived from adult human tissues such as the epidermis. However, these cells lose their multipotency rapidly in culture limiting their expansion for clinical use. Here, we show that the multipotency of keratinocyte-derived NCs (KC-NCs) can be preserved by activating the Wnt and BMP signaling axis, promoting expression of key NC-specifier genes and ultimately enhancing their differentiation potential. We also show that transcriptional changes leading to multipotency are linked to metabolic reprogramming of KC-NCs to a highly glycolytic state. Specifically, KC-NCs treated with CHIR and BMP2 rely almost exclusively on glycolysis for their energy needs, as seen by increased lactate production, glucose uptake, and glycolytic enzyme activities. This was accompanied by mitochondrial depolarization and decreased mitochondrial ATP production. Interestingly, the glycolytic end-product lactate stabilized ß-catenin and further augmented NC-gene expression. Taken together, our study shows that activation of the Wnt/BMP signaling coordinates the metabolic demands of neural crest-like stem cells governing decisions regarding multipotency and differentiation, with possible implications for regenerative medicine.


Assuntos
Crista Neural , Células-Tronco , Humanos , Diferenciação Celular , Via de Sinalização Wnt
18.
Proteome Sci ; 22(1): 5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693542

RESUMO

Hair is an advantageous biological sample due to its recordable, collectable, and storable nature. Hair's primary components are keratin and keratin-associated proteins. Owing to its abundance of cystine, keratin possesses impressive mechanical strength and chemical stability, formed by creating disulfide bonds as crosslinks within the protein peptide chain. Furthermore, keratin is cross-linked with keratin-associated proteins to create a complex network structure that provides the hair with strength and rigidity. Protein extraction serves as the foundation for hair analysis research. Bleaching hair causes damage to the structure between keratin and keratin-associated proteins, resulting in texture issues and hair breakage. This article outlines various physical treatment methods and lysate analysis that enhance the efficiency of hair protein extraction. The PLEE method achieves a three-fold increase in hair protein extraction efficiency when using a lysis solution containing SDS and combining high temperatures with intense shaking, compared to previous methods found in literature. We utilized the PLEE method to extract hair from both normal and damaged groups. Normal samples identified 156-157 proteins, including 51 keratin and keratin-associated proteins. The damaged group consisted of 155-158 identified proteins, of which 48-50 were keratin and keratin-associated proteins. Bleaching did not cause any notable difference in the protein identification of hair. However, it did reduce coverage of keratin and keratin-associated proteins significantly. Our hair protein extraction method provides extensive coverage of the hair proteome. Our findings indicate that bleaching damage results in subpar hair quality due to reduced coverage of protein primary sequences in keratin and keratin-associated proteins.

19.
Langmuir ; 40(24): 12443-12453, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833582

RESUMO

The nature always offers amazing inspiration, where it is highly desirable to endow coatings on marine equipment with powerful functions. An excellent example is slippery zone of Nepenthes pitcher, which possesses novel liquid-repellent and self-cleaning performance. Therefore, this study presents an efficient fabrication method to prepare a novel coating. The coatings were fabricated by designing biomimetic textures extracted from the lunate bodies of slippery zone on polydimethylsiloxane (PDMS) and then grafting Dictyophora indusiata polysaccharide (DIP) modifier. The as-prepared slippery coatings exhibited outstanding antifouling properties against kinds of daily life pollutants such as Chlorella and coffee. This synergistic strategy was proposed combined with environmentally friendly modifier grafting and heterogeneous microstructure on the surface to broaden new probabilities for manufacturing slippery coatings with incredible protective functionality.

20.
Environ Sci Technol ; 58(17): 7279-7290, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38629869

RESUMO

Exposure to hexavalent chromium damages genetic materials like DNA and chromosomes, further elevating cancer risk, yet research rarely focuses on related immunological mechanisms, which play an important role in the occurrence and development of cancer. We investigated the association between blood chromium (Cr) levels and genetic damage biomarkers as well as the immune regulatory mechanism involved, such as costimulatory molecules, in 120 workers exposed to chromates. Higher blood Cr levels were linearly correlated with higher genetic damage, reflected by urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and blood micronucleus frequency (MNF). Exploratory factor analysis revealed that both positive and negative immune regulation patterns were positively associated with blood Cr. Specifically, higher levels of programmed cell death protein 1 (PD-1; mediated proportion: 4.12%), programmed cell death ligand 1 (PD-L1; 5.22%), lymphocyte activation gene 3 (LAG-3; 2.11%), and their constitutive positive immune regulation pattern (5.86%) indirectly positively influenced the relationship between blood Cr and urinary 8-OHdG. NOD-like receptor family pyrin domain containing 3 (NLRP3) positively affected the association between blood Cr levels and inflammatory immunity. This study, using machine learning, investigated immune regulation and its potential role in chromate-induced genetic damage, providing insights into complex relationships and emphasizing the need for further research.


Assuntos
Cromatos , Aprendizado de Máquina , Humanos , Estudos Transversais , Poluentes Ambientais , Masculino , Dano ao DNA , Adulto , Feminino , Pessoa de Meia-Idade , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA