Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Gastric Cancer ; 27(2): 308-323, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38270815

RESUMO

BACKGROUND: Chromosome gains or localized amplifications are frequently observed in human gastric cancer (GC) and are major causes of aberrant oncogene activation. However, the significance of long non-coding RNAs (LncRNAs) in the above process is largely unknown. METHODS: The copy number aberrations (CNAs) data of GC samples were downloaded and analyzed from the TCGA database. qRT-PCR and fluorescence in situ hybridization were used to evaluate the expression of Linc01711 in GC. The effects of Linc01711 on GC progression were investigated through in vitro and in vivo assays. The mechanism of Linc01711 action was explored through transcriptome sequencing, chromatin immunoprecipitation sequencing, RNA immunoprecipitation, RNA pull-down and chromatin isolation by RNA purification (ChIRP) assays. RESULTS: We report for the first time a novel DNA copy number amplification-driven LncRNA on chromosome 20q13, designated Linc01711 in human GC, which is highly associated with malignant features. Functionally, Linc01711 significantly accelerates the proliferation and metastasis of GC. Mechanistically, Linc01711 acts as a modular scaffold to promote the binding of histone acetyltransferase HBO1 and histone demethylase KDM9. By coordinating the localization of the HBO1/KDM9 complex, Linc01711 specifies the histone modification pattern on the target genes, such as LPCAT1, and consequently facilitates the cholesterol synthesis, thereby contributing to tumor progression. CONCLUSIONS: Our findings suggest that copy number amplification-driven Linc01711 may serve as a promising prognostic predictor for GC patients and targeting Linc01711-related cholesterol metabolism pathway may be meaningful in anticancer strategies.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Variações do Número de Cópias de DNA , Código das Histonas , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , RNA , Colesterol , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
2.
Cell Physiol Biochem ; 46(3): 986-998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29669327

RESUMO

BACKGROUND/AIMS: Chronic diabetic hyperglycemia can damage various of organ systems and cause serious complications. Although diabetic cardiac autonomic neuropathy (DCAN) is the primary cause of death in diabetic patients, its pathogenesis remains to be fully elucidated. Baicalin is a flavonoid extracted from Scutellaria baicalensis root and has antibacterial, diuretic, anti-inflammatory, anti- metamorphotic, and antispasmodic effects. Our study explored the effects of baicalin on enhancing sympathoexcitatory response induced by DCAN via the P2Y12 receptor. METHODS: A type 2 diabetes mellitus rat model was induced by a combination of diet and streptozotocin. Serum epinephrine was measured by enzyme-linked immunosorbent assay. Blood pressure and heart rate were measured using the indirect tail-cuff method. Heart rate variability was analyzed using the frequency-domain of electrocardiogram recordings. The expression levels of P2Y12, interleukin-1beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and connexin 43 (Cx43) were determined by quantitative real-time reverse transcription-polymerase chain reaction and western blotting. The interaction between baicalin and P2Y12 determined using by molecular docking. RESULTS: Baicalin alleviated elevated blood pressure and heart rate, improved heart rate variability, and decreased the elevated expression levels of P2Y12, IL-1ß, TNF-α, and Cx43 in the stellate ganglia of diabetic rats. Baicalin also reduced the elevated concentration of serum epinephrine and the phosphorylation of p38 mitogen-activated protein kinase in diabetic rats. CONCLUSION: Baicalin decreases sympathetic activity by inhibiting the P2Y12 receptor in stellate ganglia satellite glial cells to maintain the balance between sympathetic and parasympathetic nerves and relieves DCAN in the rat.


Assuntos
Diabetes Mellitus Experimental/patologia , Regulação para Baixo/efeitos dos fármacos , Flavonoides/farmacologia , Receptores Purinérgicos P2/metabolismo , Gânglio Estrelado/metabolismo , Animais , Sítios de Ligação , Pressão Sanguínea/efeitos dos fármacos , Conexina 43/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Dieta , Ensaio de Imunoadsorção Enzimática , Epinefrina/sangue , Flavonoides/uso terapêutico , Frequência Cardíaca/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y12 , Gânglio Estrelado/efeitos dos fármacos , Estreptozocina/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Purinergic Signal ; 14(4): 345-357, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084083

RESUMO

Diabetes as a chronic epidemic disease with obvious symptom of hyperglycemia is seriously affecting human health globally due to the diverse diabetic complications. Diabetic cardiovascular autonomic neuropathy (DCAN) is a common complication of both type 1 and type 2 diabetes and incurs high morbidity and mortality. However, the underlying mechanism for DCAN is unclear. It is well known that purinergic signaling is involved in the regulation of cardiovascular function. In this study, we examined whether the P2Y12 receptor could mediate DCAN-induced sympathetic reflexes. Our results revealed that the abnormal changes of blood pressure, heart rate, heart rate variability, and sympathetic nerve discharge were improved in diabetic rats treated with P2Y12 short hairpin RNA (shRNA). Meanwhile, the expression of P2Y12 receptor, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and connexin 43 (Cx43) in stellate ganglia (SG) was decreased in P2Y12 shRNA-treated diabetic rats. In addition, knocking down the P2Y12 receptor also inhibited the activation of p38 MARK in the SG of diabetic rats. Taken together, these findings demonstrated that P2Y12 receptor in the SG may participate in developing diabetic autonomic neuropathy, suggesting that the P2Y12 receptor could be a potential therapeutic target for the treatment of DCAN.


Assuntos
Conexina 43/metabolismo , Neuropatias Diabéticas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Gânglio Estrelado/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Interleucina-1beta/metabolismo , Masculino , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo
5.
Clin Epigenetics ; 15(1): 26, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803423

RESUMO

BACKGROUND: Early detection and prevention of precancerous lesions can significantly reduce the morbidity and mortality of colorectal cancer (CRC). Here, we developed new candidate CpG site biomarkers for CRC and evaluated the diagnostic value of their expression in blood and stool samples of CRC and precancerous lesions. METHODS: We analyzed 76 pairs of CRC and adjacent normal tissue samples, 348 stool samples, and 136 blood samples. Candidate biomarkers for CRC were screened using a bioinformatics database and identified using a quantitative methylation-specific PCR method. The methylation levels of the candidate biomarkers were validated using blood and stool samples. The divided stool samples were used to construct and validate a combined diagnostic model and to analyze the independent or combined diagnostic value of candidate biomarkers in stool samples of CRC and precancerous lesions. RESULTS: Two candidate CpG site biomarkers for CRC, cg13096260 and cg12993163, were identified. Although both biomarkers demonstrated diagnostic performance to a certain extent when using blood samples, they showed better diagnostic value for different stages of CRC and AA with stool samples. CONCLUSIONS: cg13096260 and cg12993163 detection in stool samples could be a promising approach for screening and early diagnosis of CRC and precancerous lesions.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Biomarcadores Tumorais/análise , Sensibilidade e Especificidade , Detecção Precoce de Câncer/métodos
6.
Brain Res Bull ; 157: 90-99, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32017970

RESUMO

Diabetic cardiac autonomic neuropathy (DCAN) is a serious complication of diabetes mellitus, which often leads to cardiac dysfunction and even threatens patients' life. Osthole, a natural coumarin derivative, has anti-inflammatory, anti-oxidant and antihypertensive effects. The P2X3 receptor is related to DCAN. The objective of this study will investigate whether osthole relieves DCAN associated with the P2X3 receptor in the stellate ganglia of diabetic rats. A type 2 diabetes mellitus rat model was induced by a combination of diet and streptozotocin. Our results showed that osthole improved the abnormal changes of blood pressure, heart rate, and heart rate variability in diabetic rats and significantly reduced the up-regulated expression levels of the P2X3 receptor, tumor necrosis factor-α and interleukin-1ß in stellate ganglia of diabetic rats. Meanwhile, osthole significantly decreased the elevated serum adrenaline concentration and phosphorylation level of extracellular regulated protein kinase 1/2. In addition, the molecular docking result indicated that osthole was a perfect fit for interacting with the P2X3 receptor. Overall, osthole alleviates the sympathetic relative excitation via inhibiting the expression of P2X3 receptors in the stellate ganglia, to achieve a balance between sympathetic and parasympathetic nerves, relieves the DCAN.


Assuntos
Cumarínicos/farmacologia , Neuropatias Diabéticas/tratamento farmacológico , Gânglios/efeitos dos fármacos , Receptores Purinérgicos P2X3/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Neuropatias Diabéticas/patologia , Gânglios/patologia , Masculino , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3/metabolismo , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA