Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Chin J Traumatol ; 23(2): 89-95, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32192909

RESUMO

Pericyte, a kind of pluripotent cell, may regulate the irrigation flow and permeability of microcirculation. Pericytes are similar to the smooth muscle cells, which express several kinds of contractile proteins and have contractility. The dysfunction of pericytes is related to many microvascular diseases, including hypoxia, hypertension, diabetic retinopathy, fibrosis, inflammation, Alzheimer's disease, multiple sclerosis, and tumor formation. For a long time, their existence and function have been neglected. The distribution, structure, biomarker, related signaling pathways as well as the roles of pericytes on vascular diseases will be introduced in this review.


Assuntos
Pericitos , Pesquisa , Proteínas Contráteis/metabolismo , Humanos , Microcirculação , Pericitos/química , Pericitos/patologia , Pericitos/fisiologia , Doenças Vasculares/etiologia
2.
Chin J Integr Med ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212494

RESUMO

OBJECTIVE: To investigate whether Radix Sanguisorbae (RS, Diyu) could restore intestinal barrier function following sepsis using a cecal ligation and puncture (CLP)-induced septic rat model and lipopolysaccharide (LPS)-challenged IEC-6 cell model, respectively. METHODS: Totally 224 rats were divided into 4 groups including a control, sham, CLP and RS group according to a random number table. The rats in the control group were administrated with Ringer's lactate solution (30 mL/kg) with additional dopamine [10 µ g/(kg·min)] and given intramuscular injections of cefuroxime sodium (10 mg/kg) 12 h following CLP. The rats in the RS group were administrated with RS (10 mg/kg) through tail vein 1 h before CLP and treated with RS (10 mg/kg) 12 h following CLP. The rats in the sham group were only performed abdominal surgery without CLP. The rats in the CLP group were performed with CLP without any treatment. The other steps were same as control group. The effects of RS on intestinal barrier function, mesenteric microvessels barrier function, multi-organ function indicators, inflammatory response and 72 h survival window following sepsis were observed. In vitro, the effects of RS on LPS-challenged IEC-6 cell viability, the expressions of zona occludens-1 (ZO-1) and ferroptosis index were evaluated by cell counting kit-8, immunofluorescence and Western blot analysis. Bioinformatic tools were applied to investigate the pharmacological network of RS in sepsis to predict the active compounds and potential protein targets and pathways. RESULTS: The sepsis caused severe intestinal barrier dysfunction, multi-organ injury, lipid peroxidation accumulation, and ferroptosis in vivo. RS treatment significantly prolonged the survival time to 56 h and increased 72-h survival rate to 7/16 (43.75%). RS also improved intestinal barrier function and relieved intestinal inflammation. Moreover, RS significantly decreased lipid peroxidation and inhibited ferroptosis (P<0.05 or P<0.01). Administration of RS significantly worked better than Ringer's solution used alone. Using network pharmacology prediction, we found that ferroptosis and hypoxia inducible factor-1 (HIF-1 α) signaling pathways might be involved in RS effects on sepsis. Subsequent Western blot, ferrous iron measurements, and FerroOrange fluorescence of ferrous iron verified the network pharmacology predictions. CONCLUSION: RS improved the intestinal barrier function and alleviated intestinal injury by inhibiting ferroptosis, which was related in part to HIF-1 α/heme oxygenase-1/Fe2+ axis.

3.
Onco Targets Ther ; 16: 425-440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359351

RESUMO

Purpose: Ovarian cancer is the most lethal malignancy in gynecology. Due to limited treatment strategies and platinum resistance, newer drugs and therapeutic options are needed. Esomeprazole (ESO) has been reported to have multiple anticancer activities in preclinical and clinical research. Therefore, this study aimed to explore the anticancer effects of esomeprazole on ovarian cancer and its underlying molecular mechanisms. Methods: CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to detect cell viability and proliferation. The Transwell assay was used to evaluate cell migration and invasion capacity. Flow cytometry was used to detect cell apoptosis. Western blotting and immunofluorescence were used to detect protein expression. Results: ESO effectively inhibited the cell viability, proliferation, invasion, migration, and induced apoptosis of ovarian cancer cells in a concentration-dependent manner. Treatment with ESO decreased the expression of c-MYC, SKP2, E2F1, N-cadherin, vimentin, and matrix metalloproteinase 2 (MMP2), while it increased E-cadherin, caspase3, p53, BAX, and cleaved poly (ADP-ribose) polymerase (PARP) expression, and downregulated the PI3K/AKT/mTOR signaling pathway. Furthermore, ESO combined with cisplatin showed synergistic effects in inhibiting proliferation, invasion, and migration of cisplatin-resistant ovarian cancer cells. The mechanism may be related to the increased inhibition of c-MYC, epithelial-mesenchymal transition (EMT), and the AKT/mTOR signaling pathway and enhanced the upregulation of the pro-apoptotic protein BAX and cleaved PARP levels. Moreover, ESO combined with cisplatin synergistically upregulated the expression of the DNA damage marker γH2A.X. Conclusion: ESO exerts multiple anticancer activities and has a synergistic effect in combination with cisplatin on cisplatin-resistant ovarian cancer cells. This study provides a promising strategy to improve chemosensitivity and overcome resistance to cisplatin in ovarian cancer.

4.
Polymers (Basel) ; 15(19)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37836064

RESUMO

Chitosan and its derivatives are widely used in food packaging, pharmaceutical, biotechnology, medical, textile, paper, agriculture, and environmental industries. However, the flexibility of chitosan films is extremely poor, which limits its relevant applications to a large extent. In this paper, chitosan/sorbitol/nano-silica (CS/sorbitol/SiO2) composite films were prepared by the casting film method using chitosan, sorbitol, Tween-80 and nano-SiO2 as raw materials. The structure of the films was characterized by infrared spectroscopy, electron scanning microscopy, and X-ray diffraction analysis. The effects of sorbitol and nano-silica dosage on the mechanical properties, thermal properties and water vapor barrier properties of the composite film were investigated. The results show that with the gradual increase in sorbitol (≤75 wt %), the elongation at the break of chitosan/sorbitol films significantly increased. When the addition of sorbitol was 75 wt %, the elongation at break of the chitosan/sorbitol composite film was 13 times higher than that of the chitosan film. Moreover, nano-SiO2 can further improve the mechanical properties and thermal stability of the chitosan/sorbitol composite films. When the amount of nano-silica was 4.5 wt %, the composite film became more flexible, with a maximum elongation of 90.8% (which is 14 times that of chitosan film), and its toughness increased to 10.52 MJm-3 (which is 6 times that of chitosan film). This study balances the tensile strength and elongation at break of the composite films by adding a plasticizer and nano-filler, providing a reference for the preparation of chitosan composites or their blending with other polymers, and has practical guiding significance for the industrial production of biomass plastics.

5.
Adv Sci (Weinh) ; 10(36): e2304885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37909346

RESUMO

Excessive mitochondrial fission following ischemia and hypoxia relies on the formation of contacts between the endoplasmic reticulum and mitochondria (ER-Mito); however, the specific mechanisms behind this process remain unclear. Confocal microscopy and time course recording are used to investigate how ischemia and hypoxia affect the activation of dynamin-related protein 1 (Drp1), a protein central to mitochondrial dynamics, ER-Mito interactions, and the consequences of modifying the expression of Drp1, shroom (Shrm) 4, and inverted formin (INF) 2 on ER-Mito contact establishment. Both Drp1 activation and ER-Mito contact initiation cause excessive mitochondrial fission and dysfunction under ischemic-hypoxic conditions. The activated form of Drp1 aids in ER-Mito contact initiation by recruiting Shrm4 and promoting actin bundling between the ER and mitochondria. This process relies on the structural interplay between INF2 and scattered F-actin on the ER. This study uncovers new roles of cytoplasmic Drp1, providing valuable insights for devising strategies to manage mitochondrial imbalances in the context of ischemic-hypoxic injury.


Assuntos
Actinas , Dinaminas , Humanos , Actinas/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Isquemia , Hipóxia/metabolismo
6.
Mil Med Res ; 10(1): 13, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907884

RESUMO

BACKGROUND: Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis. We hypothesized that pericytes, a group of pluripotent cells that maintain vascular integrity and tension, are protective against sepsis via regulating vascular reactivity and permeability. METHODS: We conducted a series of in vivo experiments using wild-type (WT), platelet-derived growth factor receptor beta (PDGFR-ß)-Cre + mT/mG transgenic mice and Tie2-Cre + Cx43flox/flox mice to examine the relative contribution of pericytes in sepsis, either induced by cecal ligation and puncture (CLP) or lipopolysaccharide (LPS) challenge. In a separate set of experiments with Sprague-Dawley (SD) rats, pericytes were depleted using CP-673451, a selective PDGFR-ß inhibitor, at a dosage of 40 mg/(kg·d) for 7 consecutive days. Cultured pericytes, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were used for mechanistic investigations. The effects of pericytes and pericyte-derived microvesicles (PCMVs) and candidate miRNAs on vascular reactivity and barrier function were also examined. RESULTS: CLP and LPS induced severe injury/loss of pericytes, vascular hyporeactivity and leakage (P < 0.05). Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization (P < 0.05). Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels (P < 0.05). Additionally, PCMVs transferred miR-145 and miR-132 to VSMCs and VECs, respectively, exerting a protective effect on vascular reactivity and barrier function after sepsis (P < 0.05). miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2 (Sphk2)/sphingosine-1-phosphate receptor (S1PR)1/phosphorylation of myosin light chain 20 pathway, whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways. CONCLUSIONS: Pericytes are protective against sepsis through regulating vascular reactivity and barrier function. Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.


Assuntos
MicroRNAs , Sepse , Animais , Camundongos , Ratos , Permeabilidade Capilar/fisiologia , Conexina 43/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , MicroRNAs/farmacologia , Pericitos/metabolismo , Ratos Sprague-Dawley
7.
Front Nutr ; 9: 796356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187032

RESUMO

A composite material based on a new insect-based grasshopper protein (GP)/soy protein isolate (SPI) blend has been studied by solution casting using xylose as a crosslinker and cinnamaldehyde (CIN) as an antimicrobial agent to develop a novel antimicrobial edible packaging. In this paper, the effects of SPI, xylose, and CIN content on the properties of edible film were studied. The tensile test confirmed that 30% SPI incorporation content had the best blending effect with the mechanical properties and barrier properties improving obviously. After adding 10% xylose to form crosslinking network, the tensile strength and elongation at the break of the film showed the best state increasing to 3.4 Mpa and 38%, respectively. The 30% CIN enabled the film to be resistant to Escherichia coli and Staphylococcus aureus strongly and decreased the water vapor permeability to 1.8 × 1011 (g/cm·s·Pa) but had a negative effect on the mechanical properties. This is the first time that edible insects have been used to produce the natural edible antimicrobial packaging, proving edible insects, an excellent protein source, are tipped to be a potential source of raw materials for biomaterials.

8.
Expert Opin Drug Saf ; 21(5): 707-713, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34915780

RESUMO

BACKGROUND: Long-term use of proton pump inhibitors (PPIs) is associated with some safety issues. In this study, data mining was carried out to discover the potential association between renal neoplasms and PPIs. RESEARCH DESIGN AND METHODS: Neoplasms signals of PPIs were detected in the Food and Drug Administration Adverse Event Reporting System from 2014 to 2020 by examining the reporting odds ratio. Adjusted odds ratios were analyzed using logistic regression. RESULTS: Signals were detected with respect to renal hemangioma, acquired or unspecified cystic kidney disease, and papillary and unspecified renal cell carcinoma, of which intervals between adverse effects onset and medication were 7.00 (3.33, 15.67) years, 5.00 (1.70, 10.25) years, and 7.00 (4.72, 12.25) years, respectively. The lansoprazole had the strongest signal. Adjusted odds ratios for PPIs associated with renal cell carcinoma in cases with or without acquired cystic kidney disease or chronic kidney disease were 1.67 [95% confidence interval (CI) 1.46-1.91] and 1.62 (95% CI 1.41-1.87). CONCLUSIONS: Exposure to PPIs was related to the raised risk of renal neoplasms. Careful consideration should be given to the possibility of an increased risk when PPIs are administered.


Assuntos
Carcinoma de Células Renais , Doenças Renais Císticas , Neoplasias Renais , Sistemas de Notificação de Reações Adversas a Medicamentos , Carcinoma de Células Renais/tratamento farmacológico , Mineração de Dados , Feminino , Humanos , Doenças Renais Císticas/induzido quimicamente , Doenças Renais Císticas/tratamento farmacológico , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/epidemiologia , Masculino , Inibidores da Bomba de Prótons/efeitos adversos
9.
Biomed Pharmacother ; 148: 112665, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35228068

RESUMO

Gastric cancer is a common gastrointestinal malignancy worldwide, with a high mortality rate and poor prognosis. Esomeprazole (ESO) has been shown to have anticancer activity by affecting cell growth and autophagy and its mechanism in gastric cancer cells is evident. The PI3K/AKT/FOXO3a pathway is central in cancers. 3-Methyladenine (3-MA), a dual inhibitor of PI3K and autophagy, plays a synergistic role in combination with antitumor agents. In this study, we assessed the role of ESO on the PI3K/AKT/FOXO3a pathway and the beneficial effects of ESO combined with 3-MA in gastric cancer cells. Cell viability, proliferation, invasion, migration, apoptosis, autophagy, and protein expression were detected by CCK-8, EdU, Transwell, flow cytometry, immunofluorescence assay, and western blot. ESO decreased cell viability in a concentration- and time-dependent manner and increased autophagy with upregulation of LC3II and P62. Additionally, ESO inhibited the proliferation, migration, and invasion and induced the apoptosis of gastric cancer cells in a concentration-dependent manner. ESO inhibited PI3K/AKT/FOXO3a signaling and EGFR and SKP2 expression concentration-dependent. 3-MA enhanced the antiproliferative activity of ESO and synergistically inhibited PI3K/FOXO3a signaling and the expression of EGFR but not SKP2. Furthermore, pretreatment with the EGFR inhibitor AG1478 enhanced the antiproliferative activity of ESO in gastric cancer cells. In conclusion, our results suggested that the PI3K inhibitor 3-MA promotes the antiproliferative activity of ESO in gastric cancer cells by synergistically downregulating EGFR via the PI3K/FOXO3a pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias Gástricas , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB , Esomeprazol/farmacologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/patologia
10.
Front Physiol ; 13: 831514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392376

RESUMO

Background: The mortality of trauma combined with seawater immersion is higher than that of land injury, however, research on how to treat this critical case and which treatments to adopt is lacking. Methods: The effect of the thiol compound, N-acetyl-L-Cysteine (NAC), on survival, acidosis, coagulopathy, vital signs, oxidative stress, and mitochondrial and multi-organ function was assessed in a rat model of hemorrhagic shock combined with seawater immersion (Sea-Shock). Results: Hemorrhagic shock combined with seawater immersion caused a severe lethal triad: multi-organ impairment, oxidative stress, and mitochondrial dysfunction. NAC (30 mg/kg) with lactated Ringer's (LR) solution (2 × blood volume lost) significantly improved outcomes compared to LR or hetastarch (HES 130/0.4) alone. NAC significantly prolonged survival time to 52.48 ± 30.09 h and increased 72 h survival rate to 11/16 (68%). NAC relieved metabolic acidosis and recovered the pH back to 7.33. NAC also restored coagulation, with APTT, PT, and PT-INR decreased by 109.31, 78.09, and 73.74%, respectively, while fibrinogen level increased 246.23% compared with untreated Sea-Shock. Administration of NAC markedly improved cardiac and liver function, with some improvement of kidney function. Conclusion: The addition of NAC to crystalloid resuscitation fluid alleviated oxidative stress, restored redox homeostasis, and provided multi-organ protection in the rats after Sea-Shock. NAC may be an effective therapeutic measure for hemorrhagic shock combined with seawater immersion.

11.
Front Physiol ; 13: 948541, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262250

RESUMO

Vascular hyperpermeability is a complication of hemorrhagic shock. Pericytes (PCs) are a group of mural cells surrounded by microvessels that are located on the basolateral side of the endothelium. Previous studies have shown that damage to PCs contributes to the occurrence of many diseases such as diabetic retinopathy and myocardial infarction. Whether PCs can protect the vascular barrier function following hemorrhagic shock and the underlying mechanisms are unknown. A hemorrhagic shock rat model, Cx43 vascular endothelial cell (VEC)-specific knockdown mice, and VECs were used to investigate the role of PCs in vascular barrier function and their relationship with Cx43. The results showed that following hemorrhagic shock, the number of PCs in the microvessels was significantly decreased and was negatively associated with an increase in pulmonary and mesenteric vascular permeability. Exogenous infusion of PCs (106 cells per rat) colonized the microvessels and improved pulmonary and mesenteric vascular barrier function. Upregulation of Cx43 in PCs significantly increased the number of PCs colonizing the pulmonary vessels. In contrast, downregulation of Cx43 expression in PCs or knockout of Cx43 in VECs (Cx43 KO mice) significantly reduced PC colonization in pulmonary vessels in vivo and reduced direct contact formation between PCs and VECs in vitro. It has been suggested that PCs have an important protective effect on vascular barrier function in pulmonary and peripheral vessels following hemorrhagic shock. Cx43 plays an important role in the colonization of exogenous PCs in the microvessels. This finding provides a potential new shock treatment measure.

12.
Front Cell Dev Biol ; 9: 636327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777946

RESUMO

The damage of vascular endothelial barrier function induced by sepsis is critical in causing multiple organ dysfunctions. Previous studies showed that dexmedetomidine (Dex) played a vital role in protecting organ functions. However, whether Dex participates in protecting vascular leakage of sepsis and the associated underlying mechanism remains unknown yet. We used cecal ligation and puncture induced septic rats and lipopolysaccharide stimulated vascular endothelial cells (VECs) to establish models in vivo and in vitro, then the protective effects of Dex on the vascular endothelial barrier function of sepsis were observed, meanwhile, related mechanisms on regulating mitochondrial fission were further studied. The results showed that Dex could significantly reduce the permeability of pulmonary veins and mesenteric vessels, increase the expression of intercellular junction proteins, enhance the transendothelial electrical resistance and decrease the transmittance of VECs, accordingly protected organ functions and prolonged survival time in septic rats. Besides, the mitochondria of VECs were excessive division after sepsis, while Dex could significantly inhibit the mitochondrial fission and protect mitochondrial function by restoring mitochondrial morphology of VECs. Furthermore, the results showed that ER-MITO contact sites of VECs were notably increased after sepsis. Nevertheless, Dex reduced ER-MITO contact sites by regulating the polymerization of actin via α2 receptors. The results also found that Dex could induce the phosphorylation of the dynamin-related protein 1 through down-regulating extracellular signal-regulated kinase1/2, thus playing a role in the regulation of mitochondrial division. In conclusion, Dex has a protective effect on the vascular endothelial barrier function of septic rats. The mechanism is mainly related to the regulation of Drp1 phosphorylation of VECs, inhibition of mitochondrial division by ER-MITO contacts, and protection of mitochondrial function.

13.
J Inflamm Res ; 14: 6765-6782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34916824

RESUMO

INTRODUCTION: Vascular leakage plays a vital role in sepsis-induced multi-organ dysfunction. Currently, no specific measures are available for vascular leakage. Ferroptosis, as a recently recognized form of cell death, plays a crucial role in cell dysfunction. It is still unknown whether ferroptosis participates in the occurrence of organ dysfunction following sepsis. Our previous study showed that dexmedetomidine (Dex) could alleviate sepsis-induced organ dysfunction. However, whether the mechanism is related to ferroptosis is not clear. METHODS: The publicly available datasets of septic patients were reanalyzed, and septic models in vivo and vitro by cecal ligation and puncture and lipopolysaccharide-stimulated vascular endothelial cells (VECs) were applied. The occurrence of ferroptosis in septic patients and rats was observed, and the protective effects of Dex on ferroptosis, and related mechanisms on regulating metabolic reprogramming and mitochondrial fission were further studied. RESULTS: The transcriptomics data of patients from the GEO database showed that ferroptosis was closely related to sepsis. Sepsis induced significant ferroptosis in VECs by metabolomics analysis. The level of lipid peroxidation was increased in VECs, and the mitochondrial cristae was decreased after sepsis. Metabolomics analysis showed that Dex activated the pentose phosphate pathway and increased glutathione in VECs via up-regulation of G6PD expression. Dex could antagonize sepsis-induced the decrease in the level of Nrf2. The Nrf2 inhibitor reversed the protective effect of Dex on ferroptosis. Further study showed that Dex significantly alleviated sepsis-induced mitochondrial over-division, improved mitochondrial function, and decreased ROS, further inhibiting the ferroptosis of VECs. Dex alleviated the permeability of vessels by reducing ferroptosis and enhanced the intercellular junction of VECs. CONCLUSION: Dex protects vascular leakage following sepsis by inhibiting ferroptosis. The mechanism is mainly related to metabolic reprogramming via Nrf2 up-regulation and inhibition of mitochondrial fission.

14.
Oncol Lett ; 20(6): 329, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33101498

RESUMO

Recently, proton pump inhibitors have become a hot research topic in the field of cancer drug research. However, the specific anti-tumor effect and underlying mechanisms of esomeprazole (ESO) in gastric cancer (GC) have remained elusive. In the present study, the toxic effects of ESO on the GC cell line AGS were investigated. MTT assays confirmed that ESO inhibited the proliferation of AGS cells and significantly enhanced their chemosensitivity. Transwell assays were performed to determine the anti-metastatic effects of ESO in AGS cells. Flow cytometry demonstrated that ESO induced cell apoptosis and caused cell cycle arrest in the S and G2/M phases. Furthermore, the differential expression of 948 long non-coding RNAs (lncRNAs), 114 circular RNAs (circRNAs), 1,197 mRNAs and 199 microRNAs (miRNAs) was detected in AGS cells via microarray analysis and RNA-sequencing. The top 10 differently expressed genes were mostly located on chromosomes 10 and 19. In addition, Gene Ontology analysis indicated that the genes were accumulated in functional terms associated with DNA replication, the cell cycle and the apoptotic signaling pathway. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed a variety of significantly dysregulated signaling pathways and targets, including the EGFR tyrosine kinase inhibitor resistance pathway, forkhead box O signaling pathway, p53 signaling pathway and platinum drug resistance pathway. Subsequently, the interactions of microtubule-associated protein 2 (MAP2), homeodomain-interacting protein kinase 2 (HIPK2) and ankyrin 2 (ANK2) were noted in a competing endogenous RNA (ceRNA) network, which may be important targets of ESO, exerting an anti-tumor effect in AGS cells. Collectively, ESO affects the proliferation, metastasis, apoptosis and chemosensitivity of gastric cancer cells by regulating long non-coding RNA/circRNA-miRNA-mRNA ceRNA networks.

15.
Front Pharmacol ; 11: 597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457611

RESUMO

BACKGROUND: Vascular leakage is a common complication of hemorrhagic shock. Endothelial glycocalyx plays a crucial role in the protection of vascular endothelial barrier function. Hydroxyethyl starch (HES) is a commonly used resuscitation fluid for hemorrhagic shock. However, whether the protective effect of HES on vascular permeability after hemorrhagic shock is associated with the endothelial glycocalyx is unclear. METHODS: Using hemorrhagic shock rat model and hypoxia treated vascular endothelial cells (VECs), effects of HES (130/0.4) on pulmonary vascular permeability and the relationship to endothelial glycocalyx were observed. RESULTS: Pulmonary vascular permeability was significantly increased after hemorrhagic shock, as evidenced by the increased permeability of pulmonary vessels to albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and Evans blue, the decreased transendothelial electrical resistance of VECs and the increased transmittance of FITC-BSA. The structure of the endothelial glycocalyx was destroyed, showing a decrease in thickness. The expression of heparan sulfate, hyaluronic acid, and chondroitin sulfate, the components of the endothelial glycocalyx, was significantly decreased. HES (130/0.4) significantly improved the vascular barrier function, recovered the thickness and the expression of components of the endothelial glycocalyx by down-regulating the expression of heparinase, hyaluronidase, and neuraminidase, and meanwhile increased the expression of intercellular junction proteins ZO-1, occludin, and VE-cadherin. Degradation of endothelial glycocalyx with degrading enzyme (heparinase, hyaluronidase, and neuraminidase) abolished the beneficial effect of HES on vascular permeability, but had no significant effect on the recovery of the expression of endothelial intercellular junction proteins induced by HES (130/0.4). HES (130/0.4) decreased the expression of cleaved-caspase-3 induced by hemorrhagic shock. CONCLUSIONS: HES (130/0.4) has protective effect on vascular barrier function after hemorrgic shock.The mechanism is mainly related to the protective effect of HES on endothelial glycocalyx and intercellular junction proteins. The protective effect of HES on endothelial glycocalyx was associated with the down-regulated expression of heparinase, hyaluronidase, and neuraminidase. HES (130/0.4) had an anti-apoptotic effect in hemorrhagic shock.

16.
Front Cell Dev Biol ; 8: 643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32766250

RESUMO

Sepsis is a prevalent severe syndrome in clinic. Vascular leakage and lung injury are important pathophysiological processes during sepsis, but the mechanism remains obscure. Microvesicles (MVs) play an essential role in many diseases, while whether MVs participate in vascular leakage and lung injury during sepsis is unknown. Using cecal ligation and puncture induced sepsis rats and lipopolysaccharide stimulated vascular endothelial cells (VECs), the role and the underlying mechanism of endothelial microvesicles (EMVs) in pulmonary vascular leakage and lung injury were observed. The role of MVs from sepsis patients was verified. The results showed that the concentration of MVs in blood was significantly increased after sepsis. MVs from sepsis rats and patients induced apparent pulmonary vascular leakage and lung injury, among which EMVs played the dominant role, in which miR-23b was the key inducing factor in vascular leakage. Furthermore, downregulation and upregulation of miR-23b in EMVs showed that miR-23b mainly targeted on ZO-1 to induce vascular leakage. MVs from sepsis patients induced pulmonary vascular leakage and lung injury in normal rats. Application of classic antidepressants amitriptyline reduced the secretion of EMVs, and alleviated vascular leakage and lung injury. The study suggests that EMVs play an important role in pulmonary vascular leakage and lung injury during sepsis by transferring functional miR-23b. Antagonizing the secretion of EMVs and the miR-23b might be a potential target for the treatment of severe sepsis.

17.
Redox Biol ; 37: 101706, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32911435

RESUMO

Vascular dysfunctions such as vascular hyporeactivity following ischemic/hypoxic injury are a major cause of death in injured patients. In this study, we showed that treatment with mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor of dynamin-related protein 1 (Drp1), significantly improved vascular reactivity in ischemic rats by attenuating oxidative stress. The antioxidative effects of Mdivi-1 were relatively Drp1-independent, and possibly due to an increase in the levels of the antioxidant enzymes, SOD1 and catalase, as well as to enhanced Nrf2 expression. In addition, we found that while Mdivi-1 had little effect on Drp1 GTPase activity in vascular smooth muscle cells, it inhibited hypoxia-induced Drp1 phosphorylation at Ser-616, reducing excessive mitochondrial fission and slightly enhancing mitochondrial fusion. These effects possibly contributed to vascular protection at an early stage of ischemic/hypoxic injury. Finally, Mdivi-1 stabilized hemodynamics, increased vital organ perfusion, and improved rat survival after ischemic/hypoxic injury, proving a promising therapeutic agent for ischemic/hypoxic injury.


Assuntos
Dinâmica Mitocondrial , Quinazolinonas , Animais , Dinaminas/metabolismo , Humanos , Hipóxia , Estresse Oxidativo , Quinazolinonas/farmacologia , Ratos
18.
J Trauma Acute Care Surg ; 87(6): 1346-1353, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31464869

RESUMO

BACKGROUND: Vascular hyporeactivity plays an important role in organ dysfunction induced by endotoxic shock. Given that cytokine, such as TNF-α, plays an important role in endotoxic shock, the aim of the present study is to investigate the role of Tumor Necrosis Factor (TNF)-α in vascular hyporeactivity following endotoxic shock and the mechanisms. METHODS: Lipopolysaccharide (LPS) (1 mg/kg) injection was used for replicating the endotoxic shock model in the rabbit. The changes in the level of TNF-α in plasma in the rabbits model and the contractile response of superior mesenteric arteries (SMA) to norepinephrine (NE) and Ca were observed. The mechanisms in TNF-α-induced vascular hyporeactivity were further explored. RESULTS: The levels of TNF-α in plasma were gradually increased after 1 hour of LPS administration and reached the peak at 6 hours. The contractile responses of SMA to NE were decreased at 1 hour of LPS and lowest at 6 hour. TNF-α (200 ng/mL) incubation decreased contractile response of SMA to NE significantly. Further studies found that calcium desensitization participated in the occurrence of TNF-α-induced vascular hyporeactivity, the changes were consistent with the changes of vascular reactivity, calcium sensitivities were decreased significantly at 1 hour, 2 hours, 4 hours, and 6 hours after LPS injection. TNF-α (200 ng/mL) incubation could significantly reduce the contractile response of SMA to Ca. The activity of Rho-kinase and the changes of myosin light chain 20 (MLC20) phosphorylation level were significantly decreased at 6 hours following LPS administration, and TNF-α (200 ng/mL) incubation led to a decrease of Rho-kinase and MLC20 phosphorylation. Arginine vasopressin significantly antagonized TNF-α (200 ng/mL)-induced the decrease of the vascular reactivity and calcium sensitivity. CONCLUSION: TNF-α is involved in vascular hyporeactivity after endotoxic shock. Calcium desensitization plays an important role in TNF-α-induced vascular hyporeactivity after endotoxic shock. Rho-kinase/MLC20 phosphorylation pathway takes part in the regulation of calcium desensitization and vascular hyporeactivity induced by TNF-α. Arginine vasopressin is beneficial to endotoxic shock in TNF-α-induced vascular hyporeactivity.


Assuntos
Choque Séptico/fisiopatologia , Fator de Necrose Tumoral alfa/fisiologia , Vasoconstrição , Animais , Arginina Vasopressina/farmacologia , Cálcio/metabolismo , Feminino , Masculino , Cadeias Leves de Miosina/metabolismo , Fosforilação , Coelhos , Fator de Necrose Tumoral alfa/sangue , Vasoconstrição/efeitos dos fármacos , Quinases Associadas a rho/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
19.
J Trauma Acute Care Surg ; 87(6): 1336-1345, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31389921

RESUMO

BACKGROUND: Vascular dysfunction is a major cause of sepsis-induced multiple-organ dysfunction. Resveratrol is a polyphenol compound with extensive pharmacological effects including anti-inflammation. The aim of this study was to determine the role and mechanism of resveratrol in protecting vascular function following sepsis. METHODS: The cecal ligation and puncture method was used to establish a septic shock rat model. Resveratrol (5 mg/kg and 10 mg/kg) was administered intravenously immediately and at 12 hours after cecal ligation and puncture, respectively. The effects of resveratrol on vasodilatation function, blood flow velocity, hemodynamics, and vital organ function and its relationship to Rac-1 and HIF-1α were observed. RESULTS: Vascular relaxation reactivity and blood flow velocity were significantly decreased after septic shock, both were significantly improved by resveratrol 5 mg/kg and 10 mg/kg, and the effect of 10 mg/kg was greater. The relaxation reactivity of the superior mesenteric artery to acetylcholine (Ach) was increased by 43.2%. The blood flow velocity of mesenteric arterioles and venules was increased by 47.1% and 51%, respectively, after resveratrol (10 mg/kg) administration compared with the septic shock group. The hemodynamics and both liver and kidney blood flow were significantly decreased after septic shock, which were significantly improved them by resveratrol, which enhanced the vascular relaxation reactivity in septic shock rats. The 72-hour survival rate of septic shock rats in the resveratrol group (62.5%) was significantly higher than that in the septic shock group (6.3%). Resveratrol significantly upregulated the expression of endothelial nitric oxide synthase (eNOS) and downregulated the expression of inducible NOS, Rac-1, and HIF-1α. Inhibitors of Rac-1 and HIF-1α significantly improved the expression of eNOS, and inhibition of eNOS (L-NAME, 5 mg/kg) antagonized the resveratrol-induced improvement in vascular relaxation reactivity and survival. CONCLUSION: Resveratrol was beneficial for vasodilatation function in rats with septic shock, which is the major contribution to resveratrol improving hemodynamics and organ perfusion. The mechanism involved resveratrol upregulating the expression of eNOS by inhibiting Rac-1 and HIF-1α.


Assuntos
Resveratrol/farmacologia , Choque Séptico/fisiopatologia , Vasodilatação/efeitos dos fármacos , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Hemodinâmica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/irrigação sanguínea , Fígado/irrigação sanguínea , Masculino , Microcirculação/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Resveratrol/uso terapêutico , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Circulação Esplâncnica/efeitos dos fármacos , Regulação para Cima , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
J Trauma Acute Care Surg ; 85(4): 725-733, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086070

RESUMO

BACKGROUND: Hemorrhagic shock-induced changes in vascular reactivity appear organ-specific. In the present study, we examined the hypothesis that vascular reactivity induced by septic shock similarly displays organ-specific differences and is regulated by inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1). METHODS: Endotoxic shock was induced in rabbits by administration of lipopolysaccharide (LPS) (1 mg/kg), and organ specificity of vascular reactivity of superior mesenteric artery (SMA), celiac artery (CA), and left renal artery (LRA) as well as the potential involvement of iNOS and ET-1 examined. RESULTS: Vascular reactivity of SMA, CA, and LRA was increased at the early stages and decreased at the late stages after LPS administration. Superior mesenteric artery showed the greatest decrease in vascular reactivity in response to norepinephrine (NE) (34.9%) and acetylcholine (Ach; 32.3%), followed by LRA (NE, 33.7%; Ach, 30.5%) and CA (NE, 16.2%), whereas the relaxation reactivity of CA in response to Ach was increased to 159%. The mRNA and protein levels of iNOS and ET-1 in SMA, CA, and LRA were not affected at the early stages of endotoxic shock after LPS administration but significantly increased at the late stages. Expression levels were higher in SMA than CA and LRA and negatively correlated with the decrease in vascular reactivity. The iNOS and ET-1 inhibitors, aminoguanidine (20 mg/kg) and PD-142893 (0.02 mg/kg), respectively, induced significant improvements in vascular reactivity and organ perfusion and stabilized the hemodynamic parameters in rabbits subjected to endotoxic shock. CONCLUSION: Changes in vascular reactivity during endotoxic shock are organ-specific. Differential expression patterns of iNOS and ET-1 in different blood vessels contribute to the organ specificity of vascular reactivity. LEVEL OF EVIDENCE: Therapeutic study, level II.


Assuntos
Endotelina-1/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Choque Séptico/fisiopatologia , Vasoconstrição , Vasodilatação , Acetilcolina/farmacologia , Animais , Artéria Celíaca/metabolismo , Modelos Animais de Doenças , Antagonistas do Receptor de Endotelina A/farmacologia , Endotelina-1/antagonistas & inibidores , Endotelina-1/genética , Inibidores Enzimáticos/farmacologia , Feminino , Guanidinas/farmacologia , Ácido Láctico/sangue , Lipopolissacarídeos , Masculino , Artéria Mesentérica Superior/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Norepinefrina/farmacologia , Oligopeptídeos/farmacologia , RNA Mensageiro/metabolismo , Coelhos , Artéria Renal/metabolismo , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA