Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
2.
Nucleic Acids Res ; 49(D1): D1472-D1479, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33166388

RESUMO

Legumes have contributed to human health, sustainable food and feed production worldwide for centuries. The study of model legumes has played vital roles in deciphering key genes, pathways, and networks regulating biological mechanisms and agronomic traits. Along with emerging breeding technology such as genome editing, translation of the knowledge gained from model plants to crops is in high demand. The updated database (V3) was redesigned for translational genomics targeting the discovery of novel key genes in less-studied non-model legume crops by referring to the knowledge gained in model legumes. The database contains genomic data for all 22 included species, and transcriptomic data covering thousands of RNA-seq samples mostly from model species. The rich biological data and analytic tools for gene expression and pathway analyses can be used to decipher critical genes, pathways, and networks in model legumes. The integrated comparative genomic functions further facilitate the translation of this knowledge to legume crops. Therefore, the database will be a valuable resource to identify important genes regulating specific biological mechanisms or agronomic traits in the non-model yet economically significant legume crops. LegumeIP V3 is available free to the public at https://plantgrn.noble.org/LegumeIP. Access to the database does not require login, registration, or password.


Assuntos
Bases de Dados Genéticas , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica/métodos , Proteínas de Plantas/genética , Produtos Agrícolas , Fabaceae/classificação , Fabaceae/metabolismo , Ontologia Genética , Redes Reguladoras de Genes , Internet , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Phaseolus/genética , Phaseolus/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Plantas/metabolismo , Mapeamento de Interação de Proteínas , Software , Glycine max/genética , Glycine max/metabolismo
3.
Plant J ; 103(5): 1924-1936, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32410353

RESUMO

Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon-based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed-derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1-5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1-based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near-saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses.


Assuntos
Brachypodium/genética , Mutagênese Insercional , Proteínas de Plantas/genética , Retroelementos/genética , Cromossomos de Plantas/genética , Mutagênese Insercional/métodos , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
4.
Mol Plant Microbe Interact ; 34(10): 1128-1142, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34260261

RESUMO

The fungal family Serendipitaceae encompasses root-associated lineages with endophytic, ericoid, orchid, and ectomycorrhizal lifestyles. Switchgrass is an important bioenergy crop for cellulosic ethanol production owing to high biomass production on marginal soils otherwise unfit for food crop cultivation. The aim of this study was to investigate the host plant responses to Serendipita spp. colonization by characterizing the switchgrass root transcriptome during different stages of symbiosis in vitro. For this, we included a native switchgrass strain, Serendipita bescii, and a related strain, S. vermifera, isolated from Australian orchids. Serendipita colonization progresses from thin hyphae that grow between root cells to, finally, the production of large, bulbous hyphae that fill root cells during the later stages of colonization. We report that switchgrass seems to perceive both fungi prior to physical contact, leading to the activation of chemical and structural defense responses and putative host disease resistance genes. Subsequently, the host defense system appears to be quenched and carbohydrate metabolism adjusted, potentially to accommodate the fungal symbiont. In addition, prior to contact, switchgrass exhibited significant increases in root hair density and root surface area. Furthermore, genes involved in phytohormone metabolism such as gibberellin, jasmonic acid, and salicylic acid were activated during different stages of colonization. Both fungal strains induced plant gene expression in a similar manner, indicating a conserved plant response to members of this fungal order. Understanding plant responsiveness to Serendipita spp. will inform our efforts to integrate them into forages and row crops for optimal plant-microbe functioning, thus facilitating low-input, sustainable agricultural practices.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Basidiomycota , Micorrizas , Panicum , Austrália , Basidiomycota/genética , Fungos , Micorrizas/genética , Panicum/genética , Raízes de Plantas/genética , Simbiose , Transcriptoma/genética
5.
Plant Physiol ; 184(3): 1532-1548, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943465

RESUMO

Iron-sulfur (Fe-S) clusters are inorganic cofactors that are present in all kingdoms of life as part of a large number of proteins involved in several cellular processes, including DNA replication and metabolism. In this work, we demonstrate an additional role for two Fe-S cluster genes in biotic stress responses in plants. Eleven Fe-S cluster genes, including the NITROGEN FIXATION S-LIKE1 (NFS1) and its interactor FRATAXIN (FH), when silenced in Nicotiana benthamiana, compromised nonhost resistance to Pseudomonas syringae pv. tomato T1. NbNFS1 expression was induced by pathogens and salicylic acid. Arabidopsis (Arabidopsis thaliana) atnfs and atfh mutants, with reduced AtNFS1 or AtFH gene expression, respectively, showed increased susceptibility to both host and nonhost pathogen infection. Arabidopsis AtNFS1 and AtFH overexpressor lines displayed decreased susceptibility to infection by host pathogen P syringae pv. tomato DC3000. The AtNFS1 overexpression line exhibited constitutive upregulation of several defense-related genes and enrichment of gene ontology terms related to immunity and salicylic acid responses. Our results demonstrate that NFS1 and its interactor FH are involved not only in nonhost resistance but also in basal resistance, suggesting a new role of the Fe-S cluster pathway in plant immunity.


Assuntos
Arabidopsis/imunologia , Proteínas Ferro-Enxofre/metabolismo , Nicotiana/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas Ferro-Enxofre/genética , Doenças das Plantas/genética , Nicotiana/genética , Nicotiana/microbiologia
6.
Plant Physiol ; 184(1): 65-81, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32651189

RESUMO

We report an advanced web server, the plant-specific small noncoding RNA interference tool pssRNAit, which can be used to design a pool of small interfering RNAs (siRNAs) for highly effective, specific, and nontoxic gene silencing in plants. In developing this tool, we integrated the transcript dataset of plants, several rules governing gene silencing, and a series of computational models of the biological mechanism of the RNA interference (RNAi) pathway. The designed pool of siRNAs can be used to construct a long double-strand RNA and expressed through virus-induced gene silencing (VIGS) or synthetic transacting siRNA vectors for gene silencing. We demonstrated the performance of pssRNAit by designing and expressing the VIGS constructs to silence Phytoene desaturase (PDS) or a ribosomal protein-encoding gene, RPL10 (QM), in Nicotiana benthamiana We analyzed the expression levels of predicted intended-target and off-target genes using reverse transcription quantitative PCR. We further conducted an RNA-sequencing-based transcriptome analysis to assess genome-wide off-target gene silencing triggered by the fragments that were designed by pssRNAit, targeting different homologous regions of the PDS gene. Our analyses confirmed the high accuracy of siRNA constructs designed using pssRNAit The pssRNAit server, freely available at https://plantgrn.noble.org/pssRNAit/, supports the design of highly effective and specific RNAi, VIGS, or synthetic transacting siRNA constructs for high-throughput functional genomics and trait improvement in >160 plant species.


Assuntos
Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas , Oxirredutases/genética , Oxirredutases/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , Nicotiana/genética
7.
Plant Physiol ; 183(1): 399-413, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32079733

RESUMO

A growing number of small secreted peptides (SSPs) in plants are recognized as important regulatory molecules with roles in processes such as growth, development, reproduction, stress tolerance, and pathogen defense. Recent discoveries further implicate SSPs in regulating root nodule development, which is of particular significance for legumes. SSP-coding genes are frequently overlooked, because genome annotation pipelines generally ignore small open reading frames, which are those most likely to encode SSPs. Also, SSP-coding small open reading frames are often expressed at low levels or only under specific conditions, and thus are underrepresented in non-tissue-targeted or non-condition-optimized RNA-sequencing projects. We previously identified 4,439 SSP-encoding genes in the model legume Medicago truncatula To support systematic characterization and annotation of these putative SSP-encoding genes, we developed the M. truncatula Small Secreted Peptide Database (MtSSPdb; https://mtsspdb.noble.org/). MtSSPdb currently hosts (1) a compendium of M. truncatula SSP candidates with putative function and family annotations; (2) a large-scale M. truncatula RNA-sequencing-based gene expression atlas integrated with various analytical tools, including differential expression, coexpression, and pathway enrichment analyses; (3) an online plant SSP prediction tool capable of analyzing protein sequences at the genome scale using the same protocol as for the identification of SSP genes; and (4) information about a library of synthetic peptides and root and nodule phenotyping data from synthetic peptide screens in planta. These datasets and analytical tools make MtSSPdb a unique and valuable resource for the plant research community. MtSSPdb also has the potential to become the most complete database of SSPs in plants.


Assuntos
Medicago truncatula/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Bases de Dados Factuais , Genoma de Planta/genética , Peptídeos/genética , Proteínas de Plantas/genética
8.
Bioinformatics ; 35(14): 2512-2514, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30508039

RESUMO

SUMMARY: We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. AVAILABILITY AND IMPLEMENTATION: GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Software , Computadores
9.
J Exp Bot ; 71(16): 4972-4984, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32309861

RESUMO

Plants and arbuscular mycorrhizal fungi (AMF) engage in mutually beneficial symbioses based on a reciprocal exchange of nutrients. The beneficial character of the symbiosis is maintained through a mechanism called autoregulation of mycorrhization (AOM). AOM includes root-to-shoot-to-root signaling; however, the molecular details of AOM are poorly understood. AOM shares many features of autoregulation of nodulation (AON) where several genes are known, including the receptor-like kinase SUPER NUMERIC NODULES (SUNN), root-to-shoot mobile CLAVATA3/ENDOSPERM SURROUNDING REGION (ESR)-RELATED (CLE) peptides, and the hydroxyproline O-arabinosyltransferase ROOT DETERMINED NODULATION1 (RDN1) required for post-translational peptide modification. In this work, CLE53 was identified to negatively regulate AMF symbiosis in a SUNN- and RDN1-dependent manner. CLE53 expression was repressed at low phosphorus, while it was induced by AMF colonization and high phosphorus. CLE53 overexpression reduced AMF colonization in a SUNN- and RDN1 dependent manner, while cle53, rdn1, and sunn mutants were more colonized than the wild type. RNA-sequencing identified 700 genes with SUNN-dependent regulation in AMF-colonized plants, providing a resource for future identification of additional AOM genes. Disruption of AOM genes in crops potentially constitutes a novel route for improving AMF-derived phosphorus uptake in agricultural systems with high phosphorus levels.


Assuntos
Medicago truncatula , Micorrizas , Homeostase , Medicago truncatula/genética , Raízes de Plantas , Transdução de Sinais , Simbiose
10.
Nucleic Acids Res ; 46(W1): W49-W54, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718424

RESUMO

Plant regulatory small RNAs (sRNAs), which include most microRNAs (miRNAs) and a subset of small interfering RNAs (siRNAs), such as the phased siRNAs (phasiRNAs), play important roles in regulating gene expression. Although generated from genetically distinct biogenesis pathways, these regulatory sRNAs share the same mechanisms for post-translational gene silencing and translational inhibition. psRNATarget was developed to identify plant sRNA targets by (i) analyzing complementary matching between the sRNA sequence and target mRNA sequence using a predefined scoring schema and (ii) by evaluating target site accessibility. This update enhances its analytical performance by developing a new scoring schema that is capable of discovering miRNA-mRNA interactions at higher 'recall rates' without significantly increasing total prediction output. The scoring procedure is customizable for the users to search both canonical and non-canonical targets. This update also enables transmitting and analyzing 'big' data empowered by (a) the implementation of multi-threading chunked file uploading, which can be paused and resumed, using HTML5 APIs and (b) the allocation of significantly more computing nodes to its back-end Linux cluster. The updated psRNATarget server has clear, compelling and user-friendly interfaces that enhance user experiences and present data clearly and concisely. The psRNATarget is freely available at http://plantgrn.noble.org/psRNATarget/.


Assuntos
Biologia Computacional , Internet , MicroRNAs/genética , RNA Interferente Pequeno/genética , Software , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , RNA de Plantas , Análise de Sequência de RNA
11.
Bioinformatics ; 34(20): 3470-3478, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29718177

RESUMO

Motivation: Joint reconstruction of multiple gene regulatory networks (GRNs) using gene expression data from multiple tissues/conditions is very important for understanding common and tissue/condition-specific regulation. However, there are currently no computational models and methods available for directly constructing such multiple GRNs that not only share some common hub genes but also possess tissue/condition-specific regulatory edges. Results: In this paper, we proposed a new graphic Gaussian model for joint reconstruction of multiple gene regulatory networks (JRmGRN), which highlighted hub genes, using gene expression data from several tissues/conditions. Under the framework of Gaussian graphical model, JRmGRN method constructs the GRNs through maximizing a penalized log likelihood function. We formulated it as a convex optimization problem, and then solved it with an alternating direction method of multipliers (ADMM) algorithm. The performance of JRmGRN was first evaluated with synthetic data and the results showed that JRmGRN outperformed several other methods for reconstruction of GRNs. We also applied our method to real Arabidopsis thaliana RNA-seq data from two light regime conditions in comparison with other methods, and both common hub genes and some conditions-specific hub genes were identified with higher accuracy and precision. Availability and implementation: JRmGRN is available as a R program from: https://github.com/wenpingd. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Redes Reguladoras de Genes , Algoritmos , Funções Verossimilhança , Distribuição Normal , Software
12.
J Exp Bot ; 70(6): 1767-1774, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30775774

RESUMO

Phased small interfering RNAs (phasiRNAs) are a class of non-coding RNAs that perform essential functions in plants. Unlike microRNA biogenesis from a hairpin structure, the production of phasiRNAs usually requires a phase initiator and an RNA-dependent RNA polymerase (RDR) to form double-strand RNAs. By using full-length rice cDNA (KL-cDNA) to identify phasiRNA loci, we found that a putative non-coding sequence with a long hairpin structure generates the phasiRNAs, which we name Long Hairpin-structure containing non-coding RNA (LHR). The biogenesis of LHR-derived phasiRNAs was dependent on rice DCL4, but not on RDR2/6, DCL1, or DCL3. Since all of the LHR-phasiRNAs (-5p from the forward strand and -3p from the reverse strand of the dsRNAs) are mapped to the forward strand of LHR, LHR-phasiRNAs should be derived from its hairpin structure, similar to a microRNA precursor. A degradome-based validation suggested that several thylakoid-related genes were targeted by LHR-phasiRNAs. In addition, the production of LHR-phasiRNAs was completely abolished in the lhr mutant, which also exhibited decreased plant height, leaf size, and grain weight, probably through the regulation of photosynthesis. Based on our results, we propose a microRNA biogenesis-like pathway for producing phased siRNAs that expands our understanding of the current model of phased siRNA biogenesis in plants.


Assuntos
MicroRNAs/metabolismo , Oryza/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo
13.
Phytopathology ; 109(9): 1513-1515, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31050598

RESUMO

Puccinia novopanici is an important biotrophic fungal pathogen that causes rust disease in switchgrass. Lack of genomic resources for P. novopanici has hampered the progress toward developing effective disease resistance against this pathogen. Therefore, we have sequenced the whole genome of P. novopanici and generated a framework to understand pathogenicity mechanisms and identify effectors, repeat element invasion, genome evolution, and comparative genomics among Puccinia spp. in the future. Long- and short-read sequences were generated from P. novopanici genomic DNA by PacBio and Illumina technologies, respectively, and assembled a 99.9-Mb genome. Transcripts of P. novopanici were predicted from assembled genome using MAKER and were further validated by RNAseq data. The genome sequence information of P. novopanici will be a valuable resource for researchers working on monocot rusts and plant disease resistance in general.


Assuntos
Basidiomycota , Panicum , Basidiomycota/patogenicidade , Genoma Fúngico , Genômica , Doenças das Plantas
14.
Plant Physiol ; 175(4): 1669-1689, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030416

RESUMO

Growing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the Medicago truncatula genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated. Focusing on those known or suspected to act via receptor-mediated signaling, 240 nutrient-responsive and 365 nodulation-responsive Signaling-SSPs were identified, greatly expanding the number of SSP gene families potentially involved in acclimation to nutrient deficiencies and nodulation. Synthetic peptide applications were shown to alter root growth and nodulation phenotypes, revealing additional regulators of legume nutrient acquisition. Our results constitute a powerful resource enabling further investigations of specific SSP functions via peptide treatment and reverse genetics.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Nodulação/fisiologia , Medicago truncatula/genética , Filogenia , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Transcriptoma
15.
Nucleic Acids Res ; 44(D1): D1189-94, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578557

RESUMO

The LegumeIP 2.0 database hosts large-scale genomics and transcriptomics data and provides integrative bioinformatics tools for the study of gene function and evolution in legumes. Our recent updates in LegumeIP 2.0 include gene and protein sequences, gene models and annotations, syntenic regions, protein families and phylogenetic trees for six legume species: Medicago truncatula, Glycine max (soybean), Lotus japonicus, Phaseolus vulgaris (common bean), Cicer arietinum (chickpea) and Cajanus cajan (pigeon pea) and two outgroup reference species: Arabidopsis thaliana and Poplar trichocarpa. Moreover, the LegumeIP 2.0 features the following new data resources and bioinformatics tools: (i) an integrative gene expression atlas for four model legumes that include 550 array hybridizations from M. truncatula, 962 gene expression profiles of G. max, 276 array hybridizations from L. japonicas and 56 RNA-Seq-based gene expression profiles for C. arietinum. These datasets were manually curated and hierarchically organized based on Experimental Ontology and Plant Ontology so that users can browse, search, and retrieve data for their selected experiments. (ii) New functions/analytical tools to query, mine and visualize large-scale gene sequences, annotations and transcriptome profiles. Users may select a subset of expression experiments and visualize and compare expression profiles for multiple genes. The LegumeIP 2.0 database is freely available to the public at http://plantgrn.noble.org/LegumeIP/.


Assuntos
Bases de Dados Genéticas , Fabaceae/genética , Genes de Plantas , Genoma de Planta , Evolução Molecular , Perfilação da Expressão Gênica , Genômica
16.
PLoS Comput Biol ; 12(5): e1004925, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27224861

RESUMO

The term epistasis refers to interactions between multiple genetic loci. Genetic epistasis is important in regulating biological function and is considered to explain part of the 'missing heritability,' which involves marginal genetic effects that cannot be accounted for in genome-wide association studies. Thus, the study of epistasis is of great interest to geneticists. However, estimating epistatic effects for quantitative traits is challenging due to the large number of interaction effects that must be estimated, thus significantly increasing computing demands. Here, we present a new web server-based tool, the Pipeline for estimating EPIStatic genetic effects (PEPIS), for analyzing polygenic epistatic effects. The PEPIS software package is based on a new linear mixed model that has been used to predict the performance of hybrid rice. The PEPIS includes two main sub-pipelines: the first for kinship matrix calculation, and the second for polygenic component analyses and genome scanning for main and epistatic effects. To accommodate the demand for high-performance computation, the PEPIS utilizes C/C++ for mathematical matrix computing. In addition, the modules for kinship matrix calculations and main and epistatic-effect genome scanning employ parallel computing technology that effectively utilizes multiple computer nodes across our networked cluster, thus significantly improving the computational speed. For example, when analyzing the same immortalized F2 rice population genotypic data examined in a previous study, the PEPIS returned identical results at each analysis step with the original prototype R code, but the computational time was reduced from more than one month to about five minutes. These advances will help overcome the bottleneck frequently encountered in genome wide epistatic genetic effect analysis and enable accommodation of the high computational demand. The PEPIS is publically available at http://bioinfo.noble.org/PolyGenic_QTL/.


Assuntos
Epistasia Genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Locos de Características Quantitativas , Software , Mapeamento Cromossômico/estatística & dados numéricos , Biologia Computacional , Simulação por Computador , Hibridização Genética , Modelos Lineares , Oryza/genética , Linguagens de Programação
17.
Nature ; 480(7378): 520-4, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22089132

RESUMO

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.


Assuntos
Evolução Biológica , Genoma de Planta , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Simbiose , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Glycine max/genética , Sintenia , Vitis/genética
18.
Plant Cell Physiol ; 57(1): e12, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26657893

RESUMO

The biological networks controlling plant signal transduction, metabolism and gene regulation are composed of not only tens of thousands of genes, compounds, proteins and RNAs but also the complicated interactions and co-ordination among them. These networks play critical roles in many fundamental mechanisms, such as plant growth, development and environmental response. Although much is known about these complex interactions, the knowledge and data are currently scattered throughout the published literature, publicly available high-throughput data sets and third-party databases. Many 'unknown' yet important interactions among genes need to be mined and established through extensive computational analysis. However, exploring these complex biological interactions at the network level from existing heterogeneous resources remains challenging and time-consuming for biologists. Here, we introduce HRGRN, a graph search-empowered integrative database of Arabidopsis signal transduction, metabolism and gene regulatory networks. HRGRN utilizes Neo4j, which is a highly scalable graph database management system, to host large-scale biological interactions among genes, proteins, compounds and small RNAs that were either validated experimentally or predicted computationally. The associated biological pathway information was also specially marked for the interactions that are involved in the pathway to facilitate the investigation of cross-talk between pathways. Furthermore, HRGRN integrates a series of graph path search algorithms to discover novel relationships among genes, compounds, RNAs and even pathways from heterogeneous biological interaction data that could be missed by traditional SQL database search methods. Users can also build subnetworks based on known interactions. The outcomes are visualized with rich text, figures and interactive network graphs on web pages. The HRGRN database is freely available at http://plantgrn.noble.org/hrgrn/.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Redes Reguladoras de Genes , Transdução de Sinais , Algoritmos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Internet , Software
19.
New Phytol ; 211(1): 75-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26935010

RESUMO

Improving nitrogen (N) remobilization from aboveground to underground organs during yearly shoot senescence is an important goal for sustainable production of switchgrass (Panicum virgatum) as a biofuel crop. Little is known about the genetic control of senescence and N use efficiency in perennial grasses such as switchgrass, which limits our ability to improve the process. Switchgrass aboveground organs (leaves, stems and inflorescences) and underground organs (crowns and roots) were harvested every month over a 3-yr period. Transcriptome analysis was performed to identify genes differentially expressed in various organs during development. Total N content in aboveground organs increased from spring until the end of summer, then decreased concomitant with senescence, while N content in underground organs exhibited an increase roughly matching the decrease in shoot N during fall. Hundreds of senescence-associated genes were identified in leaves and stems. Functional grouping indicated that regulation of transcription and protein degradation play important roles in shoot senescence. Coexpression networks predict important roles for five switchgrass NAC (NAM, ATAF1,2, CUC2) transcription factors (TFs) and other TF family members in orchestrating metabolism of carbohydrates, N and lipids, protein modification/degradation, and transport processes during senescence. This study establishes a molecular basis for understanding and enhancing N remobilization and conservation in switchgrass.


Assuntos
Nitrogênio/metabolismo , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Biomassa , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Panicum/crescimento & desenvolvimento , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Estações do Ano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Nucleic Acids Res ; 42(5): e32, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24178033

RESUMO

The accurate construction and interpretation of gene association networks (GANs) is challenging, but crucial, to the understanding of gene function, interaction and cellular behavior at the genome level. Most current state-of-the-art computational methods for genome-wide GAN reconstruction require high-performance computational resources. However, even high-performance computing cannot fully address the complexity involved with constructing GANs from very large-scale expression profile datasets, especially for the organisms with medium to large size of genomes, such as those of most plant species. Here, we present a new approach, GPLEXUS (http://plantgrn.noble.org/GPLEXUS/), which integrates a series of novel algorithms in a parallel-computing environment to construct and analyze genome-wide GANs. GPLEXUS adopts an ultra-fast estimation for pairwise mutual information computing that is similar in accuracy and sensitivity to the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) method and runs ∼1000 times faster. GPLEXUS integrates Markov Clustering Algorithm to effectively identify functional subnetworks. Furthermore, GPLEXUS includes a novel 'condition-removing' method to identify the major experimental conditions in which each subnetwork operates from very large-scale gene expression datasets across several experimental conditions, which allows users to annotate the various subnetworks with experiment-specific conditions. We demonstrate GPLEXUS's capabilities by construing global GANs and analyzing subnetworks related to defense against biotic and abiotic stress, cell cycle growth and division in Arabidopsis thaliana.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Divisão Celular/genética , Processos de Crescimento Celular/genética , Genômica/métodos , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA