Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Geriatr ; 24(1): 341, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622502

RESUMO

BACKGROUND: Malnutrition is a common geriatric syndrome that is closely associated with adverse clinical outcomes and poses significant harm to older adults. Early assessment of nutritional status plays a crucial role in preventing and intervening in cases of malnutrition. However, there is currently a lack of measurable methods and biomarkers to evaluate malnutrition in older adults accurately. The aim of this study is to investigate the independent correlation between serum levels of amino acids and malnutrition in older adults, and to identify effective metabolomics biomarkers that can aid in the early detection of geriatric malnutrition. METHODS: A total of 254 geriatric medical examination participants from Beijing Hospital were included in the study, consisting of 182 individuals with normal nutritional status (Normal group) and 72 patients at risk of malnutrition or already malnourished (MN group). Malnutrition was assessed using the Mini-Nutritional Assessment Short-Form (MNA-SF). Demographic data were collected, and muscle-related and lipid indexes were determined. Serum amino acid concentrations were measured using isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS). The correlation between serum amino acid levels and malnutrition was analyzed using non-parametric tests, partial correlation analysis, linear regression, and logistic regression. RESULTS: The geriatric MN group exhibited significantly lower serum aromatic amino acid levels (P < 0.05) compared to the normal group. A positive correlation was observed between serum aromatic amino acid levels and the MNA-SF score (P = 0.002), as well as with known biomarkers of malnutrition such as body mass index (BMI) (P < 0.001) and hemoglobin (HGB) (P = 0.005). Multivariable logistic or linear regression analyses showed that aromatic amino acid levels were negatively correlated with MN and positively correlated with the MNA-SF score, after adjusting for some confounding factors, such as age, gender, BMI, smoking status, history of dyslipidemia, diabetes mellitus and frailty. Stratified analyses revealed that these trends were more pronounced in individuals without a history of frailty compared to those with a history of frailty, and there was an interaction between aromatic amino acid levels and frailty history (P = 0.004). CONCLUSION: Our study suggests that serum aromatic amino acids are independently associated with malnutrition in older adults. These results have important implications for identifying potential biomarkers to predict geriatric malnutrition or monitor its progression and severity, as malnutrition can result in poor clinical outcomes.


Assuntos
Fragilidade , Desnutrição , Humanos , Idoso , Fragilidade/diagnóstico , Cromatografia Líquida , Espectrometria de Massas em Tandem , Desnutrição/diagnóstico , Desnutrição/complicações , Estado Nutricional , Avaliação Nutricional , Biomarcadores , Aminoácidos , Aminoácidos Aromáticos , Avaliação Geriátrica/métodos
2.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612430

RESUMO

A variety of neurological and psychiatric disorders have recently been shown to be highly associated with the abnormal development and function of oligodendrocytes (OLs) and interneurons. OLs are the myelin-forming cells in the central nervous system (CNS), while interneurons are important neural types gating the function of excitatory neurons. These two types of cells are of great significance for the establishment and function of neural circuits, and they share similar developmental origins and transcriptional architectures, and interact with each other in multiple ways during development. In this review, we compare the similarities and differences in these two cell types, providing an important reference and further revealing the pathogenesis of related brain disorders.


Assuntos
Interneurônios , Oligodendroglia , Humanos , Bainha de Mielina , Neurônios , Encéfalo
3.
Int J Food Sci Nutr ; 74(2): 234-246, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37016780

RESUMO

Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite, has been shown to aggravate cardiovascular disease. However, the mechanisms of TMAO in the setting of cardiovascular disease progress remain unclear. Here, we aim to investigate the effects of TMAO on atherosclerosis (AS) development and the underlying mechanisms. Apoe -/- mice received choline or TMAO supplementation in a normal diet and a western diet for 12 weeks. Choline or TMAO supplementation in both normal diet and western diet significantly promoted plaque progression in Apoe-/- mice. Besides, serum lipids levels and inflammation response in the aortic root were enhanced by choline or TMAO supplementation. In particular, choline or TMAO supplementation in the western diet changed intestinal microbiota composition and bile acid metabolism. Therefore, choline or TMAO supplementation may promote AS by modulating gut microbiota in mice fed with a western diet and by other mechanisms in mice given a normal diet, even choline or TMAO supplementation in a normal diet can promote AS.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Camundongos , Animais , Dieta Ocidental/efeitos adversos , Colina/metabolismo , Colina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Metilaminas , Aterosclerose/etiologia , Aterosclerose/metabolismo , Suplementos Nutricionais , Apolipoproteínas E/genética
4.
Biochem Biophys Res Commun ; 614: 175-182, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35598428

RESUMO

Maternal exposure to anesthetic agents could impose significant neurocognitive risks on the developing brain of infants. Myelin produced by oligodendrocytes (OLs) is essential for the development of brain. However, the concrete effect of general anesthesia on the development and myelination of OLs is still elusive. In this study, we aim to investigate postnatal myelination and neural behavior after maternal exposure to sevoflurane. Pregnant C57BL/6 J mice (gestational day 15.5) were anesthetized with 2.5% sevoflurane (in 97.5% O2) for 6 h. Cognitive function and motor coordination of the offspring mice were evaluated with novel object recognition, Morris water maze and accelerating rotarod tests. Myelination and development of hippocampal OLs were analyzed with immunohistochemistry, qRT-PCR, western blotting and electron microscopy. The functionality of myelin was measured with electrophysiology. Our results showed that sevoflurane anesthesia during the gestational period induced cognitive and motor impairments in offspring mice, accompanied with damages of myelin structure and down regulations of myelin-associated genes and proteins (including MBP, Olig1, PDGFRα, Sox10, etc.). The development and maturation of OLs were suppressed, and the axonal conduction velocity was declined. These results demonstrated that maternal sevoflurane exposure could induce detrimental effects on cognitive and motor functions in offspring, which might be associated with disrupted myelination of OLs in the hippocampus.


Assuntos
Exposição Materna , Transtornos Motores , Animais , Cognição , Feminino , Hipocampo/metabolismo , Humanos , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Motores/induzido quimicamente , Bainha de Mielina , Oligodendroglia/fisiologia , Gravidez , Sevoflurano/efeitos adversos
5.
BMC Vet Res ; 18(1): 35, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033088

RESUMO

BACKGROUND: The fasting and stress associated with road transportation contributes to a lack of energy and a decline in the immune system of beef cattle. Therefore, it is essential for beef cattle to enhance energy reserves before transportation. Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine, which are two intermediate products of energy metabolism. To investigate the effects of transport and rumen-protected (RP)-CrPyr on the blood biochemical parameters and rumen fluid characteristics of beef cattle, twenty male Simmental crossbred cattle (659 ± 16 kg) aged 18 months were randomly allocated to four groups (n = 5) using a 2 × 2 factorial arrangement with two RP-CrPyr supplemental levels (0 or 140 g/d) and two transport treatments (5 min or 12 h): T_CrPyr140, T_CrPyr0, NT_CrPyr140, and NT_CrPyr0. After feeding for 30 days, three cattle per treatment were slaughtered. RESULTS: Compared with nontransport, transport decreased the total antioxidant capacity, catalase activity, contents of IgA, interferon γ, interleukin-1ß (IL-1ß), and IL-6 in serum, and the amounts of total volatile fatty acids (TVFA), acetate, and butyrate in rumen (P < 0.05); increased the serum lipopolysaccharide (LPS) level, contents of rumen LPS and ammonia nitrogen (P < 0.05). RP-CrPyr supplementation decreased the levels of cortisol and LPS in serum and the butyrate concentration in the rumen of beef cattle compared with those in the unsupplemented groups (P < 0.05). RP-CrPyr and transport interaction had a significant effect on the contents of serum tumour necrosis factor-α, IL-6, LPS, ruminal pH, acetate content, and acetate/propionate (P < 0.05). In terms of ruminal bacterial composition, group T_CrPyr0 increased the Prevotella genus abundance compared with group NT_CrPyr0 (P < 0.05), while group T_CrPyr140 increased Firmicutes phylum abundance and decreased Bacteroidetes phylum and genus Prevotella abundance compared with group T_CrPyr0 (P < 0.05). Moreover, Bacteroidetes was positively correlated with serum LPS. CONCLUSIONS: These results indicated that dietary supplementation with RP-CrPyr might be beneficial to alleviate transport stress by decreasing serum cortisol and LPS levels and promoting the restoration of the rumen natural flora.


Assuntos
Creatina , Suplementos Nutricionais , Ácido Pirúvico , Rúmen , Acetatos , Ração Animal/análise , Animais , Butiratos , Bovinos , Creatina/administração & dosagem , Dieta/veterinária , Fermentação , Hidrocortisona/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Masculino , Prevotella , Ácido Pirúvico/administração & dosagem , Rúmen/metabolismo
6.
Int J Mol Sci ; 23(9)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563298

RESUMO

Psychiatric disorders are complex and heterogeneous disorders arising from the interaction of multiple factors based on neurobiology, genetics, culture, and life experience. Increasing evidence indicates that sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Over the past decade, the critical, non-redundant roles of the ten-eleven translocation (TET) family of dioxygenase enzymes have been identified in the brain during developmental and postnatal stages. Specifically, TET-mediated active demethylation, involving the iterative oxidation of 5-methylcytosine to 5-hydroxymethylcytosine and subsequent oxidative derivatives, is dynamically regulated in response to environmental stimuli such as neuronal activity, learning and memory processes, and stressor exposure. Here, we review the progress of studies designed to provide a better understanding of how profiles of TET proteins and 5hmC are powerful mechanisms by which to explain neuronal plasticity and long-term behaviors, and impact transcriptional programs operative in the brain that contribute to psychiatric disorders.


Assuntos
Dioxigenases , Transtornos Mentais , 5-Metilcitosina/metabolismo , Metilação de DNA , Dioxigenases/genética , Epigênese Genética , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Plasticidade Neuronal/genética
7.
Glia ; 68(11): 2264-2276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32530539

RESUMO

Myelin sheaths, which insulate the axons and ensure saltatory conduction of the nerve impulse, are generated and maintained via largely uncharacterized mechanisms. Ermin is an oligodendrocyte-specific protein associated with the cytoskeleton, but how it regulates cytoskeletal remodeling during oligodendrocyte differentiation and its role in myelin maintenance are not clear. To address this, we generated mice constitutively deficient for Ermn, the Ermin-coding gene. We found that aged Ermn-knockout mice exhibit an aberrant myelin architecture, with splitting of myelin layers, peeling of the myelin sheath from axons, and breakdown of myelinated fibers. As a result, these mice had remarkably impaired motor coordination. Ermn knockout also accelerated cuprizone-induced demyelination and exacerbated the associated movement disorders. Ermin was found to contribute to oligodendrocyte morphogenesis by associating with the myosin phosphatase Rho interacting protein (Mprip/p116RIP ) and inactivating RhoA, a GTPase that controls cytoskeletal rearrangement in differentiating cells. These findings provide novel insights into the mechanisms regulating oligodendroglial differentiation, the maintenance of the myelin sheaths, and remyelination.


Assuntos
Bainha de Mielina , Remielinização , Animais , Cuprizona/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Oligodendroglia
8.
Sensors (Basel) ; 20(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481652

RESUMO

Modern retrieval systems tend to deteriorate because of their large output of useless and even misleading information, especially for complex search requests on a large scale. Complex information retrieval (IR) tasks requiring multi-hop reasoning need to fuse multiple scattered text across two or more documents. However, there are two challenges for multi-hop retrieval. To be specific, the first challenge is that since some important supporting facts have little lexical or semantic relationship with the retrieval query, the retriever often omits them; the second challenge is that once a retriever chooses misinformation related to the query as the entities of cognitive graphs, the retriever will fail. In this study, in order to improve the performance of retrievers in complex tasks, an intelligent sensor technique was proposed based on a sub-scope with cognitive reasoning (2SCR-IR), a novel method of retrieving reasoning paths over the cognitive graph to provide users with verified multi-hop reasoning chains. Inspired by the users' process of step-by-step searching online, 2SCR-IR includes a dynamic fusion layer that starts from the entities mentioned in the given query, explores the cognitive graph dynamically built from the query and contexts, gradually finds relevant supporting entities mentioned in the given documents, and verifies the rationality of the retrieval facts. Our experimental results show that 2SCR-IR achieves competitive results on the HotpotQA full wiki and distractor settings, and outperforms the previous state-of-the-art methods by a more than two points absolute gain on the full wiki setting.

9.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 1-11, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31850600

RESUMO

Daidzein has been reported to be effective in regulating lipid metabolism in animals. However, the molecular mechanisms of daidzein on adipogenesis in beef cattle are not yet reported and the results of daidzein on affecting lipid metabolism in other species have been conflicting. High-throughput sequencing of mRNA (RNA-Seq) technology was performed to elucidate the underlying molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. A total of 893 differentially expressed genes (DEGs) were identified by differential expression analysis, among which 405 genes were upregulated and 488 genes were downregulated. Bioinformatics analysis suggested that these DEGs were significantly enriched to the pathways related to lipid metabolism including ECM-receptor interaction, Glycolysis/Gluconeogenesis and Hedgehog signalling pathway. Daidzein significantly affected the candidate genes (Shh, Pec, Gli, Wnt6, DLK, IGFBP2, ID3 and C/EBPE) related to adipocyte differentiation. Besides, daidzein improved the ability of subcutaneous adipocytes in synthesizing triglycerides by directly using the long-chain fatty acids and enhanced the efficiency of triglyceride synthesis of subcutaneous adipocytes in Xianan steers. In conclusion, daidzein plays a positive role not only in adipogenic differentiation, but also in triglyceride synthesis in subcutaneous adipose tissue of Xianan beef cattle.


Assuntos
Bovinos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , RNA-Seq/veterinária , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Ração Animal/análise , Animais , Composição Corporal/efeitos dos fármacos , Dieta/veterinária , Isoflavonas/administração & dosagem , Masculino
10.
Eur J Neurosci ; 49(11): 1371-1387, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30633380

RESUMO

Myelin is lipid-rich structure that is necessary to avoid leakage of electric signals and to ensure saltatory impulse conduction along axons. Oligodendrocytes in central nervous system (CNS) and Schwann cells in peripheral nervous system (PNS) are responsible for myelin formation. Axonal demyelination after injury or diseases greatly impairs normal nervous system function. Therefore, understanding how the myelination process is programmed, coordinated, and maintained is crucial for developing therapeutic strategies for remyelination in the nervous system. Epigenetic mechanisms have been recognized as a fundamental contributor in this process. In recent years, histone modification, DNA modification, ATP-dependent chromatin remodeling, and non-coding RNA modulation are very active area of investigation. We will present a conceptual framework that integrates crucial epigenetic mechanisms with the regulation of oligodendrocyte and Schwann cell lineage progression during development and myelin degeneration in pathological conditions. It is anticipated that a refined understanding of the molecular basis of myelination will aid in the development of treatment strategies for debilitating disorders that involve demyelination, such as multiple sclerosis in the CNS and neuropathies in the PNS.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/genética , Epigênese Genética , Bainha de Mielina/genética , Animais , Encéfalo/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia
11.
Cell Mol Neurobiol ; 39(8): 1071-1080, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31222426

RESUMO

Calcium signaling has essential roles in the development of the nervous system, from neural induction to the proliferation, migration, and differentiation of both neuronal and glia cells. The temporal and spatial dynamics of Ca2+ signals control the highly diverse yet specific transcriptional programs that establish the complex structures of the nervous system. Ca2+-signaling pathways are shaped by interactions among metabotropic signaling cascades, ion channels, intracellular Ca2+ stores, and a multitude of downstream effector proteins that activate specific genetic programs. Progress in the last decade has led to significant advances in our understanding of the functional architecture of Ca2+ signaling networks involved in oligodendrocyte development. In this review, we summarize the molecular and functional organizations of Ca2+-signaling networks during the differentiation of oligodendrocyte, especially its impact on myelin gene expression, proliferation, migration, and myelination. Importantly, the existence of multiple routes of Ca2+ influx opens the possibility that the activity of calcium channels can be manipulated pharmacologically to encourage oligodendrocyte maturation and remyelination after demyelinating episodes in the brain.


Assuntos
Sinalização do Cálcio , Oligodendroglia/metabolismo , Animais , Axônios/metabolismo , Canais de Cálcio/metabolismo , Humanos , Bainha de Mielina/metabolismo , Receptores de Neurotransmissores/metabolismo
12.
Yi Chuan ; 38(3): 206-16, 2016 03.
Artigo em Zh | MEDLINE | ID: mdl-27001475

RESUMO

5-hydroxymethylcytosine (5hmC) is a naturally existing component in mammalian genomic DNA and is regarded as the sixth DNA base. Accumulating studies have revealed the essential role of 5hmC in embryonic development, brain function and cancer research. Compared to another well-known cytosine methylation derivate, 5-methylcytosine (5mC), the detection of 5hmC is difficult for its lower lever existing in most tissues. To distinguish 5hmC from other cytosine derivates, the methods using chemical or enzymatic DNA treatment, have been applied in targeted 5hmC detection or non-targeted 5hmC enrichment. Therefore, profiling DNA hydroxymethylcytosine by sensitive, accurate and reliable method is crucial for epigenetic study. This review discusses the principles behind recently developed techniques for 5hmC quantification and mapping. By comparing the advantages and shortcomings of these methods, the general guidelines were provided on how to select appropriate methods for specific experimental contexts.


Assuntos
Citosina/análogos & derivados , Ensaios de Triagem em Larga Escala/métodos , 5-Metilcitosina/análogos & derivados , Animais , Citosina/análise , Citosina/metabolismo , Epigenômica , Ensaios de Triagem em Larga Escala/tendências , Humanos
13.
Genesis ; 52(4): 341-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24851283

RESUMO

Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.


Assuntos
Membrana Celular/metabolismo , Bainha de Mielina/metabolismo , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase/genética , Animais , Membrana Celular/ultraestrutura , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos Transgênicos , Microscopia de Fluorescência , Bainha de Mielina/ultraestrutura , Oligodendroglia/metabolismo , Oligodendroglia/ultraestrutura , Sistema Nervoso Periférico/citologia , Células Satélites Perineuronais/metabolismo , Células Satélites Perineuronais/ultraestrutura , Medula Espinal/citologia , Medula Espinal/metabolismo
14.
Glia ; 62(6): 914-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615693

RESUMO

The ten-eleven translocation (TET) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and TET proteins in the brain, little is known about their role in oligodendrocytes (OLs). Here, we analyzed TET expression during OL development in vivo and in vitro, and found that three TET family members possess unique subcellular and temporal expression patterns. Furthermore, the level of 5hmC exhibits dynamic changes during OL maturation, which implies that 5hmC modification may play a role in the expression of critical genes necessary for OL maturation. siRNA-mediated silencing of the TET family proteins in OLs demonstrated that each of the TET proteins is required for OL differentiation. However, based on their unique domain structures, we speculate that the three TET members may function by different mechanisms. In summary, we have established the temporal expression of TET proteins and the dynamic level of 5hmC during OL development and demonstrate that all three TET members are necessary for OL differentiation.


Assuntos
Diferenciação Celular/fisiologia , Citosina/análogos & derivados , Proteínas de Ligação a DNA/biossíntese , Dioxigenases/biossíntese , Oligodendroglia/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , 5-Metilcitosina/análogos & derivados , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Citosina/biossíntese , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Humanos , Camundongos , Oxigenases de Função Mista , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/genética , Ratos , Ratos Sprague-Dawley
15.
Asian-Australas J Anim Sci ; 27(10): 1513-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25178304

RESUMO

The present aim was to investigate the effects of traditional Chinese medicine prescriptions (TCM) on body temperature, blood physiological parameters, nutrient apparent digestibility and growth performance of beef cattle under heat stress conditions. Twenty-seven beef cattle were randomly divided into three groups as following; i) high temperature control (HTC), ii) traditional Chinese medicine prescriptions I+high temperature (TCM I) and iii) traditional Chinese medicine prescriptions II+high temperature (TCM II) (n = 9 per group). The results showed that the mean body temperature declined in TCM II treatment (p<0.05). Serum T3 and T4 levels with TCM I and TCM II treatments elevated (p<0.05), and serum cortisol levels of TCM I treatments decreased (p<0.05), compared with the HTC group. Total protein, albumin, globulin in TCM II treatments elevated and blood urea nitrogen levels of both TCM treatments increased, but glucose levels of both TCM treatments decreased, compared with the HTC group (p<0.05). The apparent digestibility of organic matter and crude protein with TCM I treatment increased, and the apparent digestibility of acid detergent fiber elevated in both TCM treatments (p<0.05). Average daily feed intake was not different among three groups, however average daily gain increased and the feed:gain ratio decreased with both TCM treatments, compared with the HTC group (p<0.05). The present results suggest that dietary supplementation with TCM I or TCM II improves growth performance of heat stressed beef cattle by relieving heat stress responses and increasing nutrient apparent digestibility.

16.
Anim Biosci ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38754847

RESUMO

Objective: This study investigated the impact of Aspergillus niger lysing polysaccharide monooxygenase (AnLPMO) on in vitro rumen microbial fermentation of rice straw. Methods: AnLPMO was heterologously expressed in Escherichia coli. Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyzed the surface structure of rice straw after AnLPMO treatment. Two in vitro experiments, coupled with 16S high-throughput sequencing and qRT-PCR techniques, assessed the influence of AnLPMO on rumen microbial fermentation of rice straw. Results: AnLPMO exhibited peak activity at 40 °C and pH 6.5, with a preference for rice straw xylan hydrolysis, followed by Avicel. AnLPMO application led to the fractional removal of cellulose and hemicelluloses and a notable reduction in the levels of carbon elements and C-C groups present on the surface of rice straw. Compared to the control (no AnLPMO), supplementing AnLPMO at 1.1 U-2.0 U significantly enhanced in vitro digestibility of dry matter (IVDMD, P < 0.01), total gas production (P < 0.01), and concentrations of total volatile fatty acids (VFA, P < 0.01), acetate (P < 0.01), and ammonia-N (P < 0.01). Particularly, the 1.4 U AnLPMO group showed a 14.8% increase in IVDMD. In the second experiment, compared to deactivated AnLPMO (1.4 U), supplementing bioactive AnLPMO at 1.4 U increased IVDMD (P = 0.01), total gas production (P = 0.04), and concentrations of total VFA (P < 0.01), propionate (P < 0.01), and ammonia-N (P < 0.01), with a limited 9.6% increase in IVDMD. Supplementing AnLPMO stimulated the growth of ruminal bacterial taxa facilitating fiber degradation, including Proteobacteria, Spirochaetes, Succinivibrio, Rikenellaceae_RC9_Gut_Group, Prevotelaceae_UCG-003, Desulfovibrio, Fibrobacter succinogenes, Ruminococcus albus, R. flavefaciens, Prevotella bryantii, P. ruminicola, and Treponema bryantii. Conclusion: These findings highlight AnLPMO's potential as a feed additive for improving rice straw utilization in ruminant production.

17.
Anim Biosci ; 37(2): 240-252, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37905319

RESUMO

OBJECTIVE: The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. METHODS: Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. RESULTS: Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p< 0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. CONCLUSION: The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.

18.
Adv Sci (Weinh) ; 11(20): e2306498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38476116

RESUMO

Ca2+ signaling is essential for oligodendrocyte (OL) development and myelin formation. Inositol 1,4,5-trisphosphate receptor type 2 (ITPR2) is an endoplasmic reticulum calcium channel and shows stage-dependent high levels in postmitotic oligodendrocyte precursor cells (OPCs). The role and potential mechanism of ITPR2 in OLs remain unclear. In this study, it is revealed that loss of Itpr2 in OLs disturbs Ca2+ homeostasis and inhibits myelination in adolescent mice. Animals with OL-specific deletion of Itpr2 exhibit anxiety/depressive-like behaviors and manifest with interrupted OPC proliferation, leading to fewer mature OLs in the brain. Detailed transcriptome profiling and signal pathway analysis suggest that MAPK/ERK-CDK6/cyclin D1 axis underlies the interfered cell cycle progression in Itpr2 ablated OPCs. Besides, blocking MAPK/ERK pathway significantly improves the delayed OPC differentiation and myelination in Itpr2 mutant. Notably, the resting [Ca2+]i is increased in Itpr2 ablated OPCs, with the elevation of several plasma calcium channels. Antagonists against these plasma calcium channels can normalize the resting [Ca2+]i level and enhance lineage progression in Itpr2-ablated OPCs. Together, the findings reveal novel insights for calcium homeostasis in manipulating developmental transition from OPCs to pre-OLs; additionally, the involvement of OLs-originated ITPR2 in depressive behaviors provides new therapeutic strategies to alleviate myelin-associated psychiatric disorders.


Assuntos
Cálcio , Depressão , Homeostase , Receptores de Inositol 1,4,5-Trifosfato , Bainha de Mielina , Oligodendroglia , Animais , Camundongos , Oligodendroglia/metabolismo , Homeostase/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Bainha de Mielina/metabolismo , Cálcio/metabolismo , Depressão/metabolismo , Depressão/genética , Modelos Animais de Doenças , Comportamento Animal , Diferenciação Celular/genética
19.
Front Microbiol ; 15: 1334068, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529181

RESUMO

Introduction: Niacin is one of the essential vitamins for mammals. It plays important roles in maintaining rumen microecological homeostasis. Our previous study indicated that dietary niacin significantly elevated intramuscular fat content (IMF) in castrated finishing steers. Whether niacin affects fat deposition by regulating the microbial composition and functional capacities of gastrointestinal microbiome has been unknown yet. Methods: In this study, 16 castrated Xiangzhong Black cattle were randomly assigned into either control group fed with a basal concentrate diet (n = 8) or niacin group fed with a basal concentrate diet added 1000 mg/kg niacin (n = 8). Seven rumen samples and five cecum content samples were randomly collected from each of control and niacin groups for metagenomic sequencing analysis. Results: A total of 2,981,786 non-redundant microbial genes were obtained from all tested samples. Based on this, the phylogenetic compositions of the rumen and cecum microbiome were characterized. We found that bacteria dominated the rumen and cecum microbiome. Prevotella ruminicola and Ruminococcus flavefaciens were the most abundant bacterial species in the rumen microbiome, while Clostridiales bacterium and Eubacterium rectale were predominant bacterial species in the cecum microbiome. Rumen microbiome had significantly higher abundances of GHs, GTs, and PLs, while cecum microbiome was enriched by CBMs and AAs. We found a significant effect of dietary niacin on rumen microbiome, but not on cecum microbiome. Dietary niacin up-regulated the abundances of bacterial species producing lactic acid and butyrate, fermenting lactic acid, and participating in lipid hydrolysis, and degradation and assimilation of nitrogen-containing compounds, but down-regulated the abundances of several pathogens and bacterial species involved in the metabolism of proteins and peptides, and methane emissions. From the correlation analysis, we suggested that niacin improved nutrient digestion and absorption, but reduced energy loss, and Valine, leucine and isoleucine degradation of rumen microbiome, which resulted in the increased host IMF. Conclusion: The results suggested that dietary manipulation, such as the supplementation of niacin, should be regarded as the effective and convenient way to improve IMF of castrated finishing steers by regulating rumen microbiome.

20.
Bioengineering (Basel) ; 10(1)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36671679

RESUMO

This study was conducted to explore the rumen fermentation characteristics, bacterial diversity, and community composition of Hu sheep under four energy provision strategies. Ninety-six Hu sheep (body weight: 17.78 ± 1.24 kg) were equally assigned to four energy provision strategies: (1) low-energy diet for the whole finishing stage (LL); (2) high-energy diet for the whole finishing stage (HH); (3) low-energy diet in the early finishing stage and high-energy diet in the late finishing stage (LH); (4) high-energy diet in the early finishing stage and low-energy diet in the late finishing stage (HL). The results showed that the proportion of acetate was lower in the HH group than that in the HL group, whereas the opposite result was observed for the butyrate proportion (p < 0.05). The Chao 1, observed species, PD whole tree, and Shannon index of the rumen bacteria were higher in the LL group than that in the HH group (p < 0.05). The taxonomic annotations revealed that the Patescibacteria, Rikenellaceae RC9 gut group, Christensenellaceae R-7 group, and Anaeroplasma abundances were higher in the HL group than that in the HH group, and the opposite results were observed regarding the relative abundances of Selenomonas and Anaerovibrio (p < 0.05). The relative abundances of Spirochaetota and Treponema were higher in the LH group than that in the HH group (p < 0.05). Moreover, the analysis of similarity (ANOSIM) showed significant differences between groups (R = 0.6792 and p = 0.001). This study indicates that the energy provision strategy had little impact on the rumen fermentation characteristics, while it heavily affected the rumen bacterial diversity and community composition. This study may provide insight into the rumen fermentation characteristics and bacterial community under routine finishing models and contribute to the optimization of energy provision strategies of Hu sheep.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA