Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 37(3-4): 74-79, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702483

RESUMO

Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation. Single-molecule data revealed that the rescue stemmed from allowing sister replication forks to progress at equal rates. Our data suggest that balanced activity of Pol2's POPS and exonuclease domains is vital for genome replication and stability.


Assuntos
Replicação do DNA , Exonucleases , Humanos , Exonucleases/genética , Exonucleases/metabolismo , Replicação do DNA/genética , Mutação , Instabilidade Genômica/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo
2.
Genes Dev ; 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35926881

RESUMO

Sumoylation is emerging as a posttranslation modification important for regulating chromosome duplication and stability. The origin recognition complex (ORC) that directs DNA replication initiation by loading the MCM replicative helicase onto origins is sumoylated in both yeast and human cells. However, the biological consequences of ORC sumoylation are unclear. Here we report the effects of hypersumoylation and hyposumoylation of yeast ORC on ORC activity and origin function using multiple approaches. ORC hypersumoylation preferentially reduced the function of a subset of early origins, while Orc2 hyposumoylation had an opposing effect. Mechanistically, ORC hypersumoylation reduced MCM loading in vitro and diminished MCM chromatin association in vivo. Either hypersumoylation or hyposumoylation of ORC resulted in genome instability and the dependence of yeast on other genome maintenance factors, providing evidence that appropriate ORC sumoylation levels are important for cell fitness. Thus, yeast ORC sumoylation status must be properly controlled to achieve optimal origin function across the genome and genome stability.

3.
Genes Dev ; 35(3-4): 261-272, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33446573

RESUMO

SUMO modification regulates diverse cellular processes by targeting hundreds of proteins. However, the limited number of sumoylation enzymes raises the question of how such a large number of substrates are efficiently modified. Specifically, how genome maintenance factors are dynamically sumoylated at DNA replication and repair sites to modulate their functions is poorly understood. Here, we demonstrate a role for the conserved yeast Esc2 protein in this process by acting as a SUMO E2 cofactor. Esc2 is required for genome stability and binds to Holliday junctions and replication fork structures. Our targeted screen found that Esc2 promotes the sumoylation of a Holliday junction dissolution complex and specific replisome proteins. Esc2 does not elicit these effects via stable interactions with substrates or their common SUMO E3. Rather, we show that a SUMO-like domain of Esc2 stimulates sumoylation by exploiting a noncovalent SUMO binding site on the E2 enzyme. This role of Esc2 in sumoylation is required for Holliday junction clearance and genome stability. Our findings thus suggest that Esc2 acts as a SUMO E2 cofactor at distinct DNA structures to promote the sumoylation of specific substrates and genome maintenance.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilação/genética , Coenzimas/metabolismo , Instabilidade Genômica/genética , Ligação Proteica , Recombinação Genética , Enzimas de Conjugação de Ubiquitina/metabolismo
4.
EMBO J ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886582

RESUMO

Mutational patterns caused by APOBEC3 cytidine deaminase activity are evident throughout human cancer genomes. In particular, the APOBEC3A family member is a potent genotoxin that causes substantial DNA damage in experimental systems and human tumors. However, the mechanisms that ensure genome stability in cells with active APOBEC3A are unknown. Through an unbiased genome-wide screen, we define the Structural Maintenance of Chromosomes 5/6 (SMC5/6) complex as essential for cell viability when APOBEC3A is active. We observe an absence of APOBEC3A mutagenesis in human tumors with SMC5/6 dysfunction, consistent with synthetic lethality. Cancer cells depleted of SMC5/6 incur substantial genome damage from APOBEC3A activity during DNA replication. Further, APOBEC3A activity results in replication tract lengthening which is dependent on PrimPol, consistent with re-initiation of DNA synthesis downstream of APOBEC3A-induced lesions. Loss of SMC5/6 abrogates elongated replication tracts and increases DNA breaks upon APOBEC3A activity. Our findings indicate that replication fork lengthening reflects a DNA damage response to APOBEC3A activity that promotes genome stability in an SMC5/6-dependent manner. Therefore, SMC5/6 presents a potential therapeutic vulnerability in tumors with active APOBEC3A.

5.
Mol Cell ; 75(2): 238-251.e5, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348879

RESUMO

BRCT domains support myriad protein-protein interactions involved in genome maintenance. Although di-BRCT recognition of phospho-proteins is well known to support the genotoxic response, whether multi-BRCT domains can acquire distinct structures and functions is unclear. Here we present the tetra-BRCT structures from the conserved yeast protein Rtt107 in free and ligand-bound forms. The four BRCT repeats fold into a tetrahedral structure that recognizes unmodified ligands using a bi-partite mechanism, suggesting repeat origami enabling function acquisition. Functional studies show that Rtt107 binding of partner proteins of diverse activities promotes genome replication and stability in both distinct and concerted manners. A unified theme is that tetra- and di-BRCT domains of Rtt107 collaborate to recruit partner proteins to chromatin. Our work thus illustrates how a master regulator uses two types of BRCT domains to recognize distinct genome factors and direct them to chromatin for constitutive genome protection.


Assuntos
Instabilidade Genômica/genética , Proteínas Nucleares/ultraestrutura , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Saccharomyces cerevisiae/genética , Cromatina/genética , Dano ao DNA/genética , Ligantes , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Domínios Proteicos/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Genes Dev ; 33(19-20): 1346-1354, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575678

RESUMO

The homologous recombination (HR) machinery plays multiple roles in genome maintenance. Best studied in the context of DNA double-stranded break (DSB) repair, recombination enzymes can cleave, pair, and unwind DNA molecules, and collaborate with regulatory proteins to execute multiple DNA processing steps before generating specific repair products. HR proteins also help to cope with problems arising from DNA replication, modulating impaired replication forks or filling DNA gaps. Given these important roles, it is not surprising that each HR step is subject to complex regulation to adjust repair efficiency and outcomes as well as to limit toxic intermediates. Recent studies have revealed intricate regulation of all steps of HR by the protein modifier SUMO, which has been increasingly recognized for its broad influence in nuclear functions. This review aims to connect established roles of SUMO with its newly identified effects on recombinational repair and stimulate further thought on many unanswered questions.


Assuntos
Recombinação Homóloga/genética , Proteína SUMO-1/metabolismo , Animais , Regulação da Expressão Gênica/genética , Humanos , Rad51 Recombinase/metabolismo , Sumoilação
7.
Mol Cell ; 71(3): 409-418, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075142

RESUMO

Since the discovery of SUMO twenty years ago, SUMO conjugation has become a widely recognized post-translational modification that targets a myriad of proteins in many processes. Great progress has been made in understanding the SUMO pathway enzymes, substrate sumoylation, and the interplay between sumoylation and other regulatory mechanisms in a variety of contexts. As these research directions continue to generate insights into SUMO-based regulation, several mechanisms by which sumoylation and desumoylation can orchestrate large biological effects are emerging. These include the ability to target multiple proteins within the same cellular structure or process, respond dynamically to external and internal stimuli, and modulate signaling pathways involving other post-translational modifications. Focusing on nuclear function and intracellular signaling, this review highlights a broad spectrum of historical data and recent advances with the aim of providing an overview of mechanisms underlying SUMO-mediated global effects to stimulate further inquiry into intriguing roles of SUMO.


Assuntos
Proteína SUMO-1/metabolismo , Sumoilação/fisiologia , Animais , Núcleo Celular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia
8.
Proc Natl Acad Sci U S A ; 120(45): e2310924120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903273

RESUMO

The Smc5/6 complex (Smc5/6) is important for genome replication and repair in eukaryotes. Its cellular functions are closely linked to the ATPase activity of the Smc5 and Smc6 subunits. This activity requires the dimerization of the motor domains of the two SMC subunits and is regulated by the six non-SMC subunits (Nse1 to Nse6). Among the NSEs, Nse5 and Nse6 form a stable subcomplex (Nse5-6) that dampens the ATPase activity of the complex. However, the underlying mechanisms and biological significance of this regulation remain unclear. Here, we address these issues using structural and functional studies. We determined cryo-EM structures of the yeast Smc5/6 derived from complexes consisting of either all eight subunits or a subset of five subunits. Both structures reveal that Nse5-6 associates with Smc6's motor domain and the adjacent coiled-coil segment, termed the neck region. Our structural analyses reveal that this binding is compatible with motor domain dimerization but results in dislodging the Nse4 subunit from the Smc6 neck. As the Nse4-Smc6 neck interaction favors motor domain engagement and thus ATPase activity, Nse6's competition with Nse4 can explain how Nse5-6 disfavors ATPase activity. Such regulation could in principle differentially affect Smc5/6-mediated processes depending on their needs of the complex's ATPase activity. Indeed, mutagenesis data in cells provide evidence that the Nse6-Smc6 neck interaction is important for the resolution of DNA repair intermediates but not for replication termination. Our results thus provide a molecular basis for how Nse5-6 modulates the ATPase activity and cellular functions of Smc5/6.


Assuntos
Proteínas Cromossômicas não Histona , Reparo do DNA , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo
9.
Mol Cell ; 66(5): 577-578, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575654

RESUMO

In this issue of Molecular Cell, Wei et al. (2017) report how a DNA translocase uses SUMO as a cue to save Top2 from ubiquitin-mediated degradation and to minimize DNA breaks, thus providing insights into the SUMO and ubiquitin interplay in genome maintenance.


Assuntos
Proteína SUMO-1/genética , Sumoilação , Humanos , Compostos Organofosforados
10.
Proc Natl Acad Sci U S A ; 119(23): e2202799119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35648833

RESUMO

Structural maintenance of chromosomes (SMC) complexes are essential for chromatin organization and functions throughout the cell cycle. The cohesin and condensin SMCs fold and tether DNA, while Smc5/6 directly promotes DNA replication and repair. The functions of SMCs rely on their abilities to engage DNA, but how Smc5/6 binds and translocates on DNA remains largely unknown. Here, we present a 3.8 Å cryogenic electron microscopy (cryo-EM) structure of DNA-bound Saccharomyces cerevisiae Smc5/6 complex containing five of its core subunits, including Smc5, Smc6, and the Nse1-3-4 subcomplex. Intricate interactions among these subunits support the formation of a clamp that encircles the DNA double helix. The positively charged inner surface of the clamp contacts DNA in a nonsequence-specific manner involving numerous DNA binding residues from four subunits. The DNA duplex is held up by Smc5 and 6 head regions and positioned between their coiled-coil arm regions, reflecting an engaged-head and open-arm configuration. The Nse3 subunit secures the DNA from above, while the hook-shaped Nse4 kleisin forms a scaffold connecting DNA and all other subunits. The Smc5/6 DNA clamp shares similarities with DNA-clamps formed by other SMCs but also exhibits differences that reflect its unique functions. Mapping cross-linking mass spectrometry data derived from DNA-free Smc5/6 to the DNA-bound Smc5/6 structure identifies multi-subunit conformational changes that enable DNA capture. Finally, mutational data from cells reveal distinct DNA binding contributions from each subunit to Smc5/6 chromatin association and cell fitness. In summary, our integrative study illuminates how a unique SMC complex engages DNA in supporting genome regulation.


Assuntos
Proteínas de Ciclo Celular , Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , DNA Fúngico/química , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
11.
Genes Dev ; 31(8): 719-720, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28512234

RESUMO

SUMO homeostasis is important for many cellular processes. In the current issue of Genes & Development, Liang and colleagues (pp. 802-815) demonstrate how a desumoylation enzyme is targeted to the nucleolus for removing SUMO from specific substrates and how curtailing sumoylation levels can regulate transcription in this nuclear compartment.


Assuntos
Regulação da Expressão Gênica , Homeostase/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Animais , Nucléolo Celular/enzimologia , DNA Ribossômico/metabolismo , Endopeptidases/metabolismo , Humanos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
J Biol Chem ; 299(11): 105288, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748650

RESUMO

Rad18 interacts with the SMC5/6 localization factor 1 (SLF1) to recruit the SMC5/6 complex to DNA damage sites for repair. The mechanism of the specific Rad18 recognition by SLF1 is unclear. Here, we present the crystal structure of the tandem BRCT repeat (tBRCT) in SLF1 (SLF1tBRCT) bound with the interacting Rad18 peptide. Our structure and biochemical studies demonstrate that SLF1tBRCT interacts with two phosphoserines and adjacent residues in Rad18 for high-affinity and specificity Rad18 recognition. We found that SLF1tBRCT utilizes mechanisms common among tBRCTs as well as unique ones for Rad18 binding, the latter include interactions with an α-helical structure in Rad18 that has not been observed in other tBRCT-bound ligand proteins. Our work provides structural insights into Rad18 targeting by SLF1 and expands the understanding of BRCT-mediated complex assembly.


Assuntos
Dano ao DNA , Ubiquitina-Proteína Ligases , Ligação Proteica , Domínios Proteicos , Peptídeos , Reparo do DNA
13.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602817

RESUMO

The DNA damage checkpoint induces many cellular changes to cope with genotoxic stress. However, persistent checkpoint signaling can be detrimental to growth partly due to blockage of cell cycle resumption. Checkpoint dampening is essential to counter such harmful effects, but its mechanisms remain to be understood. Here, we show that the DNA helicase Srs2 removes a key checkpoint sensor complex, RPA, from chromatin to down-regulate checkpoint signaling in budding yeast. The Srs2 and RPA antagonism is supported by their numerous suppressive genetic interactions. Importantly, moderate reduction of RPA binding to single-strand DNA (ssDNA) rescues hypercheckpoint signaling caused by the loss of Srs2 or its helicase activity. This rescue correlates with a reduction in the accumulated RPA and the associated checkpoint kinase on chromatin in srs2 mutants. Moreover, our data suggest that Srs2 regulation of RPA is separable from its roles in recombinational repair and critically contributes to genotoxin resistance. We conclude that dampening checkpoint by Srs2-mediated RPA recycling from chromatin aids cellular survival of genotoxic stress and has potential implications in other types of DNA transactions.


Assuntos
Cromatina/genética , Dano ao DNA , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , DNA Helicases/genética , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941673

RESUMO

Structural maintenance of chromosomes (SMC) complexes are critical chromatin modulators. In eukaryotes, the cohesin and condensin SMC complexes organize chromatin, while the Smc5/6 complex directly regulates DNA replication and repair. The molecular basis for the distinct functions of Smc5/6 is poorly understood. Here, we report an integrative structural study of the budding yeast Smc5/6 holo-complex using electron microscopy, cross-linking mass spectrometry, and computational modeling. We show that the Smc5/6 complex possesses several unique features, while sharing some architectural characteristics with other SMC complexes. In contrast to arm-folded structures of cohesin and condensin, Smc5 and Smc6 arm regions do not fold back on themselves. Instead, these long filamentous regions interact with subunits uniquely acquired by the Smc5/6 complex, namely the Nse2 SUMO ligase and the Nse5/Nse6 subcomplex, with the latter also serving as a linchpin connecting distal parts of the complex. Our 3.0-Å resolution cryoelectron microscopy structure of the Nse5/Nse6 core further reveals a clasped-hand topology and a dimeric interface important for cell growth. Finally, we provide evidence that Nse5/Nse6 uses its SUMO-binding motifs to contribute to Nse2-mediated sumoylation. Collectively, our integrative study identifies distinct structural features of the Smc5/6 complex and functional cooperation among its coevolved unique subunits.


Assuntos
Proteínas de Ciclo Celular/química , Complexos Multiproteicos/química , Domínios Proteicos , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica/métodos , Espectrometria de Massas/métodos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
15.
Genes Dev ; 30(6): 687-99, 2016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26966246

RESUMO

We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1-MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.


Assuntos
RNA Helicases DEAD-box/metabolismo , Replicação do DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , RNA Helicases DEAD-box/genética , Reparo do DNA/genética , Epistasia Genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Mitose , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 298(7): 102092, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654140

RESUMO

Homologous recombination repairs DNA breaks and sequence gaps via the production of joint DNA intermediates such as Holliday junctions. Dissolving Holliday junctions into linear DNA repair products requires the activity of the Sgs1 helicase in yeast and of its homologs in other organisms. Recent studies suggest that the functions of these conserved helicases are regulated by sumoylation; however, the mechanisms that promote their sumoylation are not well understood. Here, we employed in vitro sumoylation systems and cellular assays to determine the roles of DNA and the scaffold protein Esc2 in Sgs1 sumoylation. We show that DNA binding enhances Sgs1 sumoylation in vitro. In addition, we demonstrate the Esc2's midregion (MR) with DNA-binding activity is required for Sgs1 sumoylation. Unexpectedly, we found that the sumoylation-promoting effect of Esc2-MR is DNA independent, suggesting a second function for this domain. In agreement with our biochemical data, we found the Esc2-MR domain, like its SUMO E2-binding C-terminal domain characterized in previous studies, is required for proficient sumoylation of Sgs1 and its cofactors, Top3 and Rmi1, in cells. Taken together, these findings provide evidence that while DNA binding enhances Sgs1 sumoylation, Esc2-based stimulation of this modification is mediated by two distinct domains.


Assuntos
Proteínas de Ciclo Celular , RecQ Helicases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação
17.
Plant J ; 109(4): 891-908, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34807496

RESUMO

Neolamarckia cadamba (Roxb.), a close relative of Coffea canephora and Ophiorrhiza pumila, is an important traditional medicine in Southeast Asia. Three major glycosidic monoterpenoid indole alkaloids (MIAs), cadambine and its derivatives 3ß-isodihydrocadambine and 3ß-dihydrocadambine, accumulate in the bark and leaves, and exhibit antimalarial, antiproliferative, antioxidant, anticancer and anti-inflammatory activities. Here, we report a chromosome-scale N. cadamba genome, with 744.5 Mb assembled into 22 pseudochromosomes with contig N50 and scaffold N50 of 824.14 Kb and 29.20 Mb, respectively. Comparative genomic analysis of N. cadamba with Co. canephora revealed that N. cadamba underwent a relatively recent whole-genome duplication (WGD) event after diverging from Co. canephora, which contributed to the evolution of the MIA biosynthetic pathway. We determined the key intermediates of the cadambine biosynthetic pathway and further showed that NcSTR1 catalyzed the synthesis of strictosidine in N. cadamba. A new component, epoxystrictosidine (C27H34N2O10, m/z 547.2285), was identified in the cadambine biosynthetic pathway. Combining genome-wide association study (GWAS), population analysis, multi-omics analysis and metabolic gene cluster prediction, this study will shed light on the evolution of MIA biosynthetic pathway genes. This N. cadamba reference sequence will accelerate the understanding of the evolutionary history of specific metabolic pathways and facilitate the development of tools for enhancing bioactive productivity by metabolic engineering in microbes or by molecular breeding in plants.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Alcaloides Indólicos/metabolismo , Rubiaceae/genética , Antioxidantes , Vias Biossintéticas/genética , Estudo de Associação Genômica Ampla , Extratos Vegetais , Folhas de Planta/metabolismo , Rubiaceae/crescimento & desenvolvimento , Alcaloides de Triptamina e Secologanina , Alcaloides de Vinca
18.
BMC Genomics ; 24(1): 786, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110864

RESUMO

BACKGROUND: Cymbidium sinense is an orchid that is typically used as a potted plant, given its high-grade ornamental characteristics, and is most frequently distributed in China and SE Asia. The inability to strictly regulate flowering in this economically important potted and cut-flower orchid is a bottleneck that limits its industrial development. Studies on C. sinense flowering time genes would help to elucidate the mechanism regulating flowering. There are very few studies on the genetic regulation of flowering pathways in C. sinense. Photoperiod significantly affects the flowering of C. sinense, but it was unknown how the CONSTANS gene family is involved in regulating flowering. RESULTS: In this study, eight CONSTANS-like genes were identified and cloned. They were divided into three groups based on a phylogenetic analysis. Five representative CsCOL genes (CsCOL3/4/6/8/9) were selected from the three groups to perform expression characterization and functional study. CsCOL3/4/6/8/9 are nucleus-localized proteins, and all five CsCOL genes were expressed in all organs, mainly in leaves followed by sepals. The expression levels of CsCOL3/4 (group I) were higher in all organs than other CsCOL genes. Developmental stage specific expression revealed that the expression of CsCOL3/4/9 peaked at the initial flowering stage. In contrast, the transcript level of CsCOL6/8 was highest at the pedicel development stage. Photoperiodic experiments demonstrated that the transcripts of the five CsCOL genes exhibited distinct diurnal rhythms. Under LD conditions, the overexpression of CsCOL3/4 promoted early flowering, and CsCOL6 had little effect on flowering time, whereas CsCOL8 delayed flowering of Arabidopsis thaliana. However, under SD conditions, overexpression of CsCOL4/6/8 promoted early flowering and the rosette leaves growth, and CsCOL3 induced flower bud formation in transgenic Arabidopsis. CONCLUSION: The phylogenetic analysis, temporal and spatial expression patterns, photoperiodic rhythms and functional study indicate that CsCOL family members in C. sinense were involved in growth, development and flowering regulation through different photoperiodic pathway. The results will be useful for future research on mechanisms pertaining to photoperiod-dependent flowering, and will also facilitate genetic engineering-based research that uses Cymbidium flowering time genes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Filogenia , Fotoperíodo , Ritmo Circadiano , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/metabolismo
19.
Pharmacol Res ; 197: 106953, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804925

RESUMO

Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1ß, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.


Assuntos
Aterosclerose , Curcumina , Humanos , Células Endoteliais , Curcumina/farmacologia , Curcumina/uso terapêutico , Multimorbidade , NF-kappa B , Fosfatidilinositol 3-Quinases , Especiarias
20.
Mol Cell ; 60(2): 268-79, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26439300

RESUMO

Elucidating the individual and collaborative functions of genome maintenance factors is critical for understanding how genome duplication is achieved. Here, we investigate a conserved scaffold in budding yeast, Rtt107, and its three partners: a SUMO E3 complex, a ubiquitin E3 complex, and Slx4. Biochemical and genetic findings show that Rtt107 interacts separately with these partners and contributes to their individual functions, including a role in replisome sumoylation. We also provide evidence that Rtt107 associates with replisome components, and both itself and its associated E3s are important for replicating regions far from initiation sites. Corroborating these results, replication defects due to Rtt107 loss and genotoxic sensitivities in mutants of Rtt107 and its associated E3s are rescued by increasing replication initiation events through mutating two master repressors of late origins, Mrc1 and Mec1. These findings suggest that Rtt107 functions as a multi-functional platform to support replication progression with its partner E3 enzymes.


Assuntos
Replicação do DNA , Endodesoxirribonucleases/genética , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/genética , Proteína SUMO-1/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endodesoxirribonucleases/metabolismo , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína SUMO-1/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA