Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Nature ; 586(7829): 390-394, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057223

RESUMO

Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity1-3, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating1,2, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors4-12, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent13. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.

2.
Proc Natl Acad Sci U S A ; 119(39): e2202563119, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122234

RESUMO

Hundreds of members have been synthesized and versatile applications have been promised for endofullerenes (EFs) in the past 30 y. However, the formation mechanism of EFs is still a long-standing puzzle to chemists, especially the mechanism of embedding clusters into charged carbon cages. Here, based on synthesis and structures of two representative vanadium-scandium-carbido/carbide EFs, VSc2C@Ih (7)-C80 and VSc2C2@Ih (7)-C80, a reasonable mechanism-C1 implantation (a carbon atom is implanted into carbon cage)-is proposed to interpret the evolution from VSc2C carbido to VSc2C2 carbide cluster. Supported by theoretical calculations together with crystallographic characterization, the single electron on vanadium (V) in VSc2C@Ih (7)-C80 is proved to facilitate the C1 implantation. While the V=C double bond is identified for VSc2C@Ih (7)-C80, after C1 implantation the distance between V and C atoms in VSc2C2@Ih (7)-C80 falls into the range of single bond lengths as previously shown in typical V-based organometallic complexes. This work exemplifies in situ self-driven implantation of an outer carbon atom into a charged carbon cage, which is different from previous heterogeneous implantation of nonmetal atoms (Group-V or -VIII atoms) driven by high-energy ion bombardment or high-pressure offline, and the proposed C1 implantation mechanism represents a heretofore unknown metal-carbon cluster encapsulation mechanism and can be the fundamental basis for EF family genesis.

3.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38848498

RESUMO

Here we report on the strong magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption up to 5.0 T on {Er5Ni6} metal clusters obtained by reaction of enantiopure chiral ligands and NiII and ErIII precursors. Single-crystal diffraction analysis reveals that these compounds are 3d-4f heterometallic clusters, showing helical chirality. MChD spectroscopy reveals a high gMChD dissymmetry factor of ca. 0.24 T-1 (T = 4.0 K, B = 1.0 T) for the 4I13/2 ← 4I15/2 magnetic-dipole allowed electronic transition of the ErIII centers. This record value is 1 or 2 orders of magnitude higher than that of the d-d electronic transitions of the NiII ions and the others f-f electric-dipole induced transitions of the ErIII centers. These findings clearly show the key role that magnetic-dipole allowed transitions have in the rational design of chiral lanthanide systems showing strong MChD.

4.
Small ; : e2401044, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516941

RESUMO

Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.

5.
Inorg Chem ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935512

RESUMO

Keggin-Fe13 clusters are considered foundational building blocks or prenucleation precursors of ferrihydrite. Understanding the factors that influence the rotational configuration of these clusters, and their transformations in water, is vital for comprehending the formation mechanism of ferrihydrite. Here, we report syntheses and crystal structures of four lanthanide-iron-oxo clusters, namely, [Dy6Fe13(Gly)12(µ2-OH)6(µ3-OH)18(µ4-O)4(H2O)17]·13ClO4·19H2O (1), [Dy6Fe13(Gly)12(µ3-OH)24(µ4-O)4(H2O)18]·13ClO4·14H2O (2), [Pr8Fe34(Gly)24(µ3-OH)28(µ3-O)30(µ4-O)4(H2O)30]·6ClO4·20H2O (3), and [Pr6Fe13(Gly)12(µ3-OH)24(µ4-O)4(H2O)18]·13ClO4·22H2O (4, Gly = glycine). Single-crystal analyses reveal that 1 has a ß-Keggin-Fe13 cluster, marking the first documented instance of such a cluster to date. Conversely, both 2 and 4 contain an α-Keggin-Fe13 cluster, while 3 is characterized by four hexavacant ε-Keggin-Fe13 clusters. Magnetic property investigations of 1 and 2 show that 2 exhibits ferromagnetic interactions, while 1 exhibits antiferromagnetic interactions. An exploration of the synthetic conditions for 1 and 2 indicates that a higher pH promotes the formation of α-Keggin-Fe13 clusters, while a lower pH favors ß-Keggin-Fe13 clusters. A detailed analysis of the transition from 3 to 4 emphasizes that lacunary Keggin-Fe13 clusters can morph into Keggin-Fe13 clusters with a decrease in pH, accompanied by a significant change in their rotational configuration.

6.
Inorg Chem ; 63(18): 8003-8007, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38647013

RESUMO

A series of chiral heterometallic Ln-Co clusters, denoted as Co2Ln and Co3Ln2 (Ln = Dy and Er), were synthesized by reacting the chiral chelating ligand (R/S)-2-(1-hydroxyethyl)pyridine (Hmpm), CoAc2·4H2O, and Ln(NO3)3·6H2O. Co2Ln and Co3Ln2 exhibit perfect mirror images in circular dichroism within the 320-700 nm range. Notably, the Co2Er and Co3Er2 clusters display pronounced magnetic circular dichroism (MCD) responses of the hypersensitive f-f transitions 4I15/2-4G11/2 at 375 nm and 4I15/2-2H11/2 at 520 nm of ErIII ions. This study highlights the strong magneto-optical activity associated with hypersensitive f-f transitions in chiral 3d-4f magnetic clusters.

7.
J Am Chem Soc ; 145(40): 22176-22183, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779382

RESUMO

Single crystals with chiral shapes aroused the interest of chemists due to their fascinating polarization rotation properties. Although the formation of large-scale spiral structures is considered to be a potential factor in chiral crystals, the precise mechanism behind their formation remains elusive. Herein, we present a rare phenomenon involving the multitransfer and expression of chirality at micro-, meso-, and macroscopic levels, starting from chiral carbon atoms and extending to the double-helical secondary structure, ultimately resulting in the chiral geometry of crystals. The assembly of the chiral double helices is facilitated by the dual characteristics of amide groups derived from amino acids, which serve as both hydrogen bond donors and receptors, similar to the assembly pattern observed in DNA. Crystal face analysis and theoretical morphology reveal two critical factors for the mechanism of the chiral crystal: inherent intrinsically symmetrical distribution of crystal faces and their acquired growth. Importantly, the magnetic circular dichroism (MCD) study reveals the strong magneto-optical response of the hypersensitive f-f transition in the UV-vis-NIR region, which is much stronger than previously observed signals. Remarkably, an external magnetic field can reverse the CD signal. This research highlights the potential of lanthanide-based chiral helical structures as promising magneto-optical materials.

8.
J Am Chem Soc ; 145(31): 16983-16987, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37505903

RESUMO

Electrically conductive metal-organic frameworks (MOFs) have been extensively studied for their potential uses in energy-related technologies and sensors. However, achieving that goal requires MOFs to be highly stable and maintain their conductivity under practical operating conditions with varying solution environments and temperatures. Herein, we have designed and synthesized a new series of {[Ln4(µ4-O)(µ3-OH)3(INA)3(GA)3](CF3SO3)(H2O)6}n (denoted as Ln4-MOFs, Ln = Gd, Tm, and Lu, INA = isonicotinic acid, GA = glycolic acid) single crystals, where electrons are found to transport along the π-π stacked aromatic carbon rings in the crystals. The Ln4-MOFs show remarkable stability, with minimal changes in conductivity under varying solution pH (1-12), temperature (373 K), and electric field as high as 800 000 V/m. This stability is achieved through the formation of strong coordination bonds between high-valent Ln(III) ions and rigid carboxylic linkers as well as hydrogen bonds that enhance the robustness of the electron transport path. The demonstrated lanthanide MOFs pave the way for the design of stable and conductive MOFs.

9.
J Am Chem Soc ; 145(42): 23188-23195, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37820275

RESUMO

Inorganic molecular cages are emerging multifunctional molecular-based platforms with the unique merits of rigid skeletons and inherited properties from constituent metal ions. However, the sensitive coordination bonds and vast synthetic space have limited their systematic exploration. Herein, two giant cage-like clusters featuring the organic ligand-directed inorganic skeletons of Ni4[La74Ni104(IDA)96(OH)184(C2O4)12(H2O)76]·(NO3)38·(H2O)120 (La74Ni104, 5 × 5 × 3 - C2O4) and [La84Ni132(IDA)108(OH)168(C2O4)24(NO3)12(H2O)116]·(NO3)72·(H2O)296 (La84Ni132, 5 × 5 × 5 - C2O4) were discovered by a high-throughput synthetic search. With the assistance of machine learning analysis of the experimental data, phase diagrams of the two clusters in a four-parameter synthetic space were depicted. The effect of alkali, oxalate, and other parameters on the formation of clusters and the mechanism regulating the size of two n × m × l clusters were elucidated. This work uses high-throughput synthesis and machine learning methods to improve the efficiency of 3d-4f cluster discovery and finds the highest-nuclearity 3d-4f cluster to date by regulating the size of the n × m × l inorganic cages through oxalate ions, which pushes the synthetic methodology study on elusive inorganic giant cages in a significantly systematic way.

10.
J Am Chem Soc ; 145(30): 16778-16786, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37406618

RESUMO

Endohedral metallofullerenes (EMFs) are sub-nano carbon materials with diverse applications, yet their formation mechanism, particularly for metastable isomers, remains ambiguous. The current theoretical methods focus mainly on the most stable isomers, leading to limited predictability of metastable ones due to their low stabilities and yields. Herein, we report the successful isolation and characterization of two metastable EMFs, Sc2C2@C1(39656)-C82 and Sc2C2@C1(51383)-C84, which violate the isolated pentagon rule (IPR). These two non-IPR EMFs exhibit a rare case of planar and pennant-like Sc2C2 clusters, which can be considered hybrids of the common butterfly-shaped and linear configurations. More importantly, the theoretical results reveal that despite being metastable, these two non-IPR EMFs survived as the products from their most stable precursors, Sc2C2@C2v(5)-C80 and Sc2C2@Cs(6)-C82, via a C2 insertion during the post-formation annealing stages. We propose a systematic theoretical method for predicting metastable EMFs during the post-formation stages. The unambiguous molecular-level structural evidence, combined with the theoretical calculation results, provides valuable insights into the formation mechanisms of EMFs, shedding light on the potential of post-formation mechanisms as a promising approach for EMF synthesis.

11.
Inorg Chem ; 62(5): 1781-1785, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35608919

RESUMO

Two Keggin Fe13-oxo clusters, [Pr12Fe33(NO3)6(L-van)4(D-van)5(TEOA)12(µ3-OH)12(µ4-OH)12(µ4-O)28(H2O)4]·(ClO4)3·(NO3)·10H2O (1) and [Dy12Fe33(NO3)2(L-van)3(D-van)3(TEOA)12(µ3-OH)18(µ4-OH)6(µ4-O)28(H2O)9]·(ClO4)5·(NO3)6·15H2O (2), where L-van = l-valine, D-van = d-valine, and TEOA = triethanolamine, were prepared by using Ln3+ as a stabilizer. Cluster 1 crystallizes in a chiral space group of C2, while cluster 2 crystallizes in a centrosymmetric space group of Pnma. Dynamic magnetic measurements of 2 under a zero direct-current field reveal that 2 exhibits single-molecule-magnet characteristics with an energy barrier of 18.79 K. Significantly, the formation of the chiral cluster 1 is closely related to the larger radius of the Pr3+ ion.

12.
Inorg Chem ; 62(44): 18009-18013, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870376

RESUMO

Ratiometric luminescent thermometers with excellent performance often require the luminescent materials to possess high thermal stability and relative sensitivity (Sr). However, such luminescent materials are very rare, especially in physiological (298-323 K) and high-temperature (>373 K) regions. Here we report the synthesis and luminescent property of [Tb0.995Eu0.005(pfbz)2(phen)Cl] (3), which not only exhibits high Sr in physiological temperature but also has a Sr up to 7.47% K-1 at 440 K, the largest Sr at 440 K in known lanthanide-based coordination compound luminescent materials.

13.
Inorg Chem ; 62(42): 17041-17045, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37819767

RESUMO

The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.

14.
J Am Chem Soc ; 144(24): 10736-10742, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35671378

RESUMO

Herein, a nitrogen-embedded quintuple [7]helicene (N-Q7H) with an azapentabenzocorannulene core, which can be considered to be a helicene/azacorannulene hybrid π-system, was synthesized from azapentabenzocorannulene in a three-step process. N-Q7H is the first example of a multiple helicene with an azabuckybowl core. Single-crystal X-ray diffractometry unambiguously confirmed the structure of the propeller-shaped hybrid π-system. Owing to nitrogen-atom doping in the multiple helicenes and effective hybridization between the helicene and azacorannulene, N-Q7H exhibits considerably redshifted absorption and emission (yellow-to-green color change and green-to-near-infrared fluorescence change) relative to the azapentabenzocorannulene core. The broad absorption from the ultraviolet-visible to the NIR region is ascribable to the allowed transition between the highest occupied molecular orbital and the lowest unoccupied molecular orbital after symmetry breaking, as revealed by density functional theory calculations. Compared to previous propeller-shaped multiple helicenes with corannulene or hexabenzocoronene (etc.) as cores, N-Q7H demonstrates a significantly higher NIR fluorescence quantum efficiency of 28%. Additionally, the chiral-resolution and redox properties of N-Q7H were investigated. The excellent photophysical and inherent chiral properties of N-Q7H suggest that azapentabenzocorannulene can be used as an outstanding nitrogen-embedded core to construct novel multiple helicenes with wide application potential, including as NIR fluorescent bio-probes.

15.
Anal Chem ; 94(40): 13719-13727, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36173369

RESUMO

Based on the Venturi self-pumping effect, real-time sniffing with mass spectrometry (R-sniffing MS) is developed as a tool for direct and real-time mass spectrometric analysis of both gaseous and solid samples. It is capable of dual-mode operation in either gaseous or solid phase, with the corresponding techniques termed as Rg-sniffing MS and Rs-sniffing MS, respectively. In its gaseous mode, Rg-sniffing MS is capable of analyzing a gaseous mixture with response time (0.8-2.1 s rise time and 7.3-9.6 s fall time), spatial resolution (<80 µm), three-dimensional diffusion imaging, and aroma distribution imaging of red pepper. In its solid mode, an appropriate solvent droplet desorbs the sample from a solid surface, followed by the aspiration of the mixture using the Venturi self-pumping effect into the mass spectrometer, wherein it is ionized by a standard ion source. Compared with the desorption electrospray ionization (DESI) technique, Rs-sniffing MS demonstrated considerably improved limit of detection (LOD) values for arginine (0.07 µg/cm2 Rs-sniffing vs 1.47 µg/cm2 DESI), thymopentin (0.10 µg/cm2 vs 2.67 µg/cm2), and bacitracin (0.16 µg/cm2 vs 2.28 µg/cm2). Rs-sniffing is applicable for the detection of C60(OCH3)6Cl-, an intermediate in the methoxylation reaction involving C60Cl6 (solid) and methanol (liquid). The convenient and highly sensitive R-sniffing MS has a characteristic separation of desorption from the ionization process, in which the matrix atmosphere of desorption can be interfaced by a pipe channel and self-pumped by the Venturi effect with consequent integration using a standard ion source. The R-sniffing MS operates in a voltage-, heat-, and vibration-free environment, wherein the analyte is ionized by a standard ion source. Consequently, a wide range of samples can be analyzed simultaneously by the R-sniffing MS technique, regardless of their physical state.


Assuntos
Gases , Espectrometria de Massas por Ionização por Electrospray , Arginina , Bacitracina , Metanol , Solventes , Espectrometria de Massas por Ionização por Electrospray/métodos , Timopentina
16.
Inorg Chem ; 61(50): 20365-20372, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36475689

RESUMO

Lanthanide-iron clusters usually display interesting structures and outstanding magnetic properties. However, due to the high reactivity (acidity) of the Fe3+-H2O bond and the inability to form a terminal oxo ligand, the preparation of high-nuclearity Ln-Fe clusters is a great challenge. Herein, a series of lanthanide-iron-oxo clusters with the formulas [Y6Fe(HL)10(NO3)2(EG)2(µ3-OH)8(H2O)4]·ClO4·N-H2BDEA·2H2O (Y6Fe, 1, H2L = 3-hydroxypivalic acid, EG = ethylene glycol, N-H2BDEA = 2,2'-(butylimino)diethanol), [Ln8Fe3(H2TEOA)2(HTEOA)2(HL)10(µ3-OH)9(µ2-OH)(µ4-O)2(H2O)4]·(NO3)3·xH2O (Ln = Y, x = 13 for 2, Y8Fe3; Ln = Dy, x = 10 for 3, Dy8Fe3; H3TEOA = triethanolamine), and [Ln12Fe14(HL)16(µ3-OH)20(µ2-OH)12(µ4-O)12(H2O)12]·(NO3)6·xH2O (Ln = Y, x = 40 for 4, Y12Fe14; Ln = Dy, x = 30 for 5, Dy12Fe14) were obtained by adjusting the pH with different aminopolyols as organic alkalis. Structural analysis showed that a cubane-like unit was the main structural unit in compounds 1-5. Compound 1 was formed by two {Y3Fe(µ3-OH)4} units with the common vertices, and compounds 2 and 3 were formed by two {Y3Fe(µ3-OH)3(µ4-O)} units with the common vertices bridging a quadrilateral unit {Ln2Fe2(µ3-OH)3(µ2-OH)}. The basic structural units of cubane-like {Ln2Fe2(µ3-OH)(µ4-O)3}, triangular {LnFe2(µ3-OH)2(µ4-O)}, and neutral iron-hydroxyl {Fe(µ3-OH)(µ2-OH)2} were found in compounds 4 and 5. The universality of building blocks for the assembly has been demonstrated in high-nuclearity lanthanide-iron-oxo clusters. Meanwhile, the structural regulation of the lanthanide-iron-oxo clusters 1-5 was realized by adjusting the pH with different organic alkalis, which provided the reference for the effective synthesis of high-nuclearity lanthanide-iron-oxo clusters. Magnetic studies showed that 3 and 5 displayed a slow magnetic relaxation behavior.

17.
Inorg Chem ; 61(26): 9849-9854, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35731144

RESUMO

A series of acetylacetone-protected lanthanide-titanium-oxo clusters (LTOCs), formulated as [La6Ti(µ3-OH)8(acac)12(CH3O)2(CH3OH)6] (La6Ti; Hacac = acetylacetone) and [Ln9Ti2(µ4-O)(µ3-OH)14(acac)17(CH3O)2(CH3OH)3] [Ln = Eu (Eu9Ti2) and Tb (Tb9Ti2)], were synthesized through the reactions of LnCl3·6H2O (Ln = La, Eu, and Tb), Hacac, Ti(OiPr)4, and triethylamine in methanol. Crystal structural analysis shows that La6Ti exhibits an hourglass-like structure consisting of two La3Ti cubane subunits by sharing one Ti4+ ion, while Eu9Ti2 can be viewed as a combination of four Eu3Ti cubane subunits by sharing three corners and one side. The photoluminescence (PL) measurements show that Tb9Ti2 exhibits excellent PL properties with a high quantum yield (QY) of 34.8%, while Eu9Ti2 only has a QY of 1.4% because of the different photosensitizations of ligands to Eu3+ and Tb3+ ions in the photophysical process.

18.
Inorg Chem ; 61(9): 4121-4129, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35201748

RESUMO

Metal clusters with well-defined crystal structures are extremely useful for studying the synergistic catalytic effects and associated catalytic mechanisms. In this study, two pairs of chiral lanthanide-transition metal clusters (R)/(S)-Co3Ln2 (Ln = Tb or Dy) were synthesized using Schiff-base ligands [(R)- or (S)-H3L] with multiple Lewis base sites (O sites). The as-prepared (R)/(S)-Co3Ln2 chiral metal clusters exhibited good catalytic functionality in the asymmetric synthesis of chiral cyanohydrins, with high conversions of up to 99% and medium-to-high enantiomeric excess values of up to 78%. The catalysis process followed a mechanism in which the bifunctional metal clusters of (R)/(S)-Co3Ln2, containing Lewis acid sites and Lewis base sites, simultaneously activated the aldehydes and trimethylsilyl cyanide, respectively. Consequently, synergistic catalysis was realized. The enantioselectivity of the different aldehydes and stereochemical configuration of the resulting products are attributed to the formation of a steric chiral pocket via the external chiral ligands on the clusters. In addition, heterogeneous asymmetric cyanosilylation using (R)/(S)-Co3Ln2 chiral metal clusters achieved high chemoselectivity and regioselectivity under mild conditions.

19.
Inorg Chem ; 61(50): 20531-20537, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459444

RESUMO

Hybrid organic-inorganic halide perovskites (HOIPs) have received continued interest for their structure diversity and potential application in optoelectronic, solar cells, nonlinear optics (NLO), and ferroelectrics. Structural symmetry breaking induced by water molecules in single-crystal-to-single-crystal (SCSC) transformations is beneficial to develop ferroelectrics or second-harmonic generation (SHG) materials. Along this line, a water-containing two-dimensional (2D) double perovskite, (C6H16N2)2AgBiBr8·H2O (1), was prepared. Acentric 1 suffered a twice SCSC transformation when subjected to dehydration and rehydration, where the new centric (C6H16N2)2AgBiBr8 (2) and acentric (C6H16N2)2AgBiBr8·0.5H2O (3) were generated. In contrast to the irreversible transformation from 1 to 2 (symmetry: P21 → Pmna), it is prominent that the reversible conversion of centric 2 to acentric 3 (symmetry: Pmna ↔ P21212). The result validated the effect of guest water on inducing structural transformation and symmetry breaking of 2D perovskites, inspiring further explorations on water-involved 2D materials.

20.
Angew Chem Int Ed Engl ; 61(20): e202200823, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35229421

RESUMO

Stepwise assembly starting from a preassembled metalloligand is a promising approach to obtain otherwise unattainable silver nanoclusters, but hard to be intrinsically identified due to the lack of convincing evidence to justify such a process. Herein, hexagonal and rectangular Ag18 nanoclusters are constructed from the [Mo2 O5 (PTC4A)2 ]6- (H4 PTC4A=p-phenyl-thiacalix[4]arene) metalloligand through stepwise assembly. The formation of the metalloligand is confirmed by electrospray ionization mass spectrometry, then assembled with silver ions to form two geometrically different Ag18 nanoclusters in different solvents. The cyclization from the metalloligand to [(Mo2 O5 PTC4A)6 ]12- can be realized without alcohols and otherwise blocked by them. The installation of this metalloligand not only provides comprehensive understanding of how the solvents regulate the silver nanocluster structures, but also brings new insights for the controllable ligand metallization and subsequent condensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA