Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Plant Physiol ; 194(3): 1889-1905, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37949839

RESUMO

Small RNAs are widely involved in plant immune responses. However, the role of long small RNAs (25 to 40 nt) in monocot plant disease resistance is largely unknown. Here, we identified a long small RNA (lsiR76113) from rice (Oryza sativa) that is downregulated by Magnaporthe oryzae infection and targets a gene encoding CYCLIC NUCLEOTIDE-GATED CHANNEL 5 (CNGC5). The cngc5 mutant lines were more susceptible to M. oryzae than the wild type, while knocking down lsiR76113 in transgenic rice plants promoted pathogen resistance. A protoplast transient expression assay showed that OsCNGC5 promotes Ca2+ influx. These results demonstrate that OsCNGC5 enhances rice resistance to rice blast by increasing the cytosolic Ca2+ concentration. Importantly, exogenous Ca2+ application enhanced rice M. oryzae resistance by affecting reactive oxygen species (ROS) production. Moreover, cngc5 mutants attenuated the PAMP-triggered immunity response, including chitin-induced and flg22-induced ROS bursts and protein phosphorylation in the mitogen-activated protein kinase cascade, indicating that OsCNGC5 is essential for PAMP-induced calcium signaling in rice. Taken together, these results suggest that lsiR76113-mediated regulation of Ca2+ influx is important for PTI responses and disease resistance in rice.


Assuntos
Cálcio , Resistência à Doença , Resistência à Doença/genética , Espécies Reativas de Oxigênio , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Plantas Geneticamente Modificadas , RNA , Nucleotídeos Cíclicos
2.
Cell Mol Biol Lett ; 29(1): 81, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816685

RESUMO

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Studies have indicated that immune dysfunction plays a central role in the pathogenesis of sepsis. Dendritic cells (DCs) play a crucial role in the emergence of immune dysfunction in sepsis. The major manifestations of DCs in the septic state are abnormal functions and depletion in numbers, which are linked to higher mortality and vulnerability to secondary infections in sepsis. Apoptosis is the most widely studied pathway of number reduction in DCs. In the past few years, there has been a surge in studies focusing on regulated cell death (RCD). This emerging field encompasses various forms of cell death, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death (ADCD). Regulation of DC's RCD can serve as a possible therapeutic focus for the treatment of sepsis. Throughout time, numerous tactics have been devised and effectively implemented to improve abnormal immune response during sepsis progression, including modifying the functions of DCs and inhibiting DC cell death. In this review, we provide an overview of the functional impairment and RCD of DCs in septic states. Also, we highlight recent advances in targeting DCs to regulate host immune response following septic challenge.


Assuntos
Células Dendríticas , Sepse , Células Dendríticas/imunologia , Sepse/imunologia , Sepse/patologia , Humanos , Animais , Morte Celular Regulada , Autofagia , Apoptose , Piroptose
3.
Plant J ; 102(5): 948-964, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31923320

RESUMO

Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.


Assuntos
Oryza/metabolismo , Homeostase/genética , Homeostase/fisiologia , Oryza/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , RNA Interferente Pequeno/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
4.
Plant J ; 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29775494

RESUMO

Exploring the regulatory mechanism played by endogenous rice miRNAs in defense responses against the blast disease is of great significance in both resistant variety breeding and disease control management. We identified rice defense-related miRNAs by comparing rice miRNA expression patterns before and after Magnaporthe oryzae strain Guy11 infection. We discovered that osa-miR164a expression reduced upon Guy11 infection at both early and late stages, which was perfectly associated with the induced expression of its target gene, OsNAC60. OsNAC60 encodes a transcription factor, over-expression of which enhanced defense responses, such as increased programmed cell death, greater ion leakage, more reactive oxygen species accumulation and callose deposition, and upregulation of defense-related genes. By using transgenic rice over-expressing osa-miR164a, and a transposon insertion mutant of OsNAC60, we showed that when the miR164a/OsNAC60 regulatory module was dysfunctional, rice developed significant susceptibility to Guy11 infection. The co-expression of OsNAC60 and osa-miR164a abolished the OsNAC60 activity, but not its synonymous mutant. We further validated that this regulatory module is conserved in plant resistance to multiple plant diseases, such as the rice sheath blight, tomato late blight, and soybean root and stem rot diseases. Our results demonstrate that the miR164a/OsNAC60 regulatory module manipulates rice defense responses to M. oryzae infection. This discovery is of great potential for resistant variety breeding and disease control to a broad spectrum of pathogens in the future.

5.
Int J Mol Sci ; 19(7)2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970857

RESUMO

Blast disease is one of the major rice diseases, and causes nearly 30% annual yield loss worldwide. Resistance genes that have been cloned, however, are effective only against specific strains. In cultivation practice, broad-spectrum resistance to various strains is highly valuable, and requires researchers to investigate the basal defense responses that are effective for diverse types of pathogens. In this study, we took a quantitative proteomic approach and identified 634 rice proteins responsive to infections by both Magnaporthe oryzae strains Guy11 and JS153. These two strains have distinct pathogenesis mechanisms. Therefore, the common responding proteins represent conserved basal defense to a broad spectrum of blast pathogens. Gene ontology analysis indicates that the “responding to stimulus" biological process is explicitly enriched, among which the proteins responding to oxidative stress and biotic stress are the most prominent. These analyses led to the discoveries of OsPRX59 and OsPRX62 that are robust callose inducers, and OsHSP81 that is capable of inducing both ROS production and callose deposition. The identified rice proteins and biological processes may represent a conserved rice innate immune machinery that is of great value for breeding broad-spectrum resistant rice in the future.


Assuntos
Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Proteômica/métodos , Resistência à Doença
6.
Cytokine Growth Factor Rev ; 76: 112-126, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38155038

RESUMO

Interleukin (IL)- 33, a nuclear factor and pleiotropic cytokine of the IL-1 family, is gaining attention owing to its important role in chronic inflammatory and autoimmune diseases. This review extends our knowledge of the effects exerted by IL-33 on target cells by binding to its specific receptor serum stimulation-2 (ST2). Depending on the tissue context, IL-33 performs multiple functions encompassing host defence, immune response, initiation and amplification of inflammation, tissue repair, and homeostasis. The levels and activity of IL-33 in the body are controlled by complex IL-33-targeting regulatory pathways. The unique temporal and spatial expression patterns of IL-33 are associated with host homeostasis and the development of immune and inflammatory disorders. Therefore, understanding the origin, function, and processes of IL-33 under various conditions is crucial. This review summarises the regulatory mechanisms underlying the IL-33/ST2 signalling axis and its potential role and clinical significance in immune and inflammatory diseases, and discusses the current complex and conflicting findings related to IL-33 in host responses.


Assuntos
Doenças Autoimunes , Interleucina-33 , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Citocinas , Inflamação
7.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 237-243, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38538350

RESUMO

OBJECTIVE: To investigate the effect of stress-induced protein Sestrin2 (SESN2) on necroptosis of mouse dendritic cell (DC) induced by lipopolysaccharide (LPS) combined with zVAD, a panaspartate-specific cysteine protease (caspase) inhibitor. METHODS: The DC2.4 cell line derived from the bone marrow of mouse in the 3rd to 10th generations was cultured. The cells were stimulated with LPS for 0 hour, 6 hours, 12 hours, and 24 hours, and grouped according to the stimulation time points. Western blotting was performed to determine the protein expression of SESN2 in each group. Overexpression empty lentivirus (NC), SESN2 gene overexpression RNA sequence lentivirus (SESN2 LV-RNA), small interfering empty lentivirus (NS), and SESN2 gene small interfering RNA sequence lentivirus (SESN2 siRNA) were transfected into DC2.4 cells. After 72 hours of transfection, cell fluorescence expression was observed under the inverted fluorescence microscope. Cells in each transfection group were stimulated with LPS for 24 hours. The blank control groups were set up and cultured with phosphate buffered saline (PBS) for 24 hours. Western blotting was performed to measure SESN2 protein expression. In the same groups as above, cells were stimulated with LPS+zVAD for 24 hours. The blank control groups were set up and cultured with PBS for 24 hours. Western blotting was used to determine the expression of mixed lineage kinase domain-like protein (MLKL) and phosphorylated-MLKL (p-MLKL). The p-MLKL levels and the number of positive cells were observed using laser scanning confocal microscopy. The necroptotic cell ratios were assessed by both flow cytometry and Hoechst staining. RESULTS: Compared to the LPS 0 hour group, the expression of SESN2 in the LPS 24 hours group showed a significant increase. Therefore, 24 hours was chosen as the subsequent stimulation time point. After successful lentivirus transduction and 24 hours of cultivation, the MLKL phosphorylation level in the SESN2 siRNA+LPS+zVAD group was significantly higher than that in the NS+LPS+zVAD group. The MLKL phosphorylation in the SESN2 LV-RNA+LPS+zVAD group was significantly lower than that in the NC+LPS+zVAD group. The MLKL phosphorylation levels in both the NS+LPS+zVAD group and the NC+LPS+zVAD group were obviously higher than those in the NS+PBS group and the NC+PBS group, respectively. Laser scanning confocal microscopy showed that the trends in quantity and fluorescence intensity of p-MLKL protein expressions were consistent with the above results. The results from flow cytometry analysis and Hoechst staining showed that the rates of cell necrotic apoptosis in SESN2 siRNA+LPS+zVAD group were significantly higher than those in NS+LPS+zVAD group [flow cytometry analysis: (30.800±1.153)% vs. (20.800±1.114)%, Hoechst staining: (75.267±0.451)% vs. (46.267±3.371)%, both P < 0.05], indicating that knocking down SESN2 further exacerbated the occurrence of necroptosis. The necrotic apoptosis rates in SESN2 LV-RNA+LPS+zVAD group were significantly lower than those in NC+LPS+zVAD group [flow cytometry analysis: (7.160±0.669)% vs. (19.240±2.322)%, Hoechst staining: (32.433±3.113)% vs. (48.567±4.128)%, both P < 0.05], indicating that overexpressing SESN2 reversed such response and markedly reduced the proportion of necroptotic cells compared to the corresponding empty vector group. CONCLUSIONS: SESN2 exhibits an inhibitory effect on necroptosis of DC in sepsis. Targeted SESN2 expression may regulate the process of DC-mediated immune response in sepsis.


Assuntos
Lipopolissacarídeos , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Necroptose , Apoptose , Necrose , RNA Interferente Pequeno
8.
J Adv Res ; 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740259

RESUMO

BACKGROUND: Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW: We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.

9.
Mol Plant Pathol ; 24(8): 999-1013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026481

RESUMO

Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.


Assuntos
Interações Hospedeiro-Patógeno , MicroRNAs , Interações Hospedeiro-Patógeno/genética , RNA Interferente Pequeno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Interferência de RNA , Plantas/genética , Plantas/metabolismo
10.
Burns Trauma ; 11: tkac055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873287

RESUMO

Background: Ribophagy is a selective autophagic process that specifically degrades dysfunctional or superfluous ribosomes to maintain cellular homeostasis. Whether ribophagy can ameliorate the immunosuppression in sepsis similar to endoplasmic reticulum autophagy (ERphagy) and mitophagy remains unclear. This study was conducted to investigate the activity and regulation of ribophagy in sepsis and to further explore the potential mechanism underlying the involvement of ribophagy in T-lymphocyte apoptosis. Methods: The activity and regulation of nuclear fragile X mental retardation-interacting protein 1 (NUFIP1)-mediated ribophagy in T lymphocytes during sepsis were first investigated by western blotting, laser confocal microscopy and transmission electron microscopy. Then, we constructed lentivirally transfected cells and gene-defective mouse models to observe the impact of NUFIP1 deletion on T-lymphocyte apoptosis and finally explored the signaling pathway associated with T-cell mediated immune response following septic challenge. Results: Both cecal ligation and perforation-induced sepsis and lipopolysaccharide stimulation significantly induced the occurrence of ribophagy, which peaked at 24 h. When NUFIP1 was knocked down, T-lymphocyte apoptosis was noticeably increased. Conversely, the overexpression of NUFIP1 exerted a significant protective impact on T-lymphocyte apoptosis. Consistently, the apoptosis and immunosuppression of T lymphocytes and 1-week mortality rate in NUFIP1 gene-deficient mice were significantly increased compared with those in wild-type mice. In addition, the protective effect of NUFIP1-mediated ribophagy on T lymphocytes was identified to be closely related to the endoplasmic reticulum stress apoptosis pathway, and PERK-ATF4-CHOP signaling was obviously involved in downregulating T-lymphocyte apoptosis in the setting of sepsis. Conclusions: NUFIP1-mediated ribophagy can be significantly activated to alleviate T lymphocyte apoptosis through the PERK-ATF4-CHOP pathway in the context of sepsis. Thus, targeting NUFIP1-mediated ribophagy might be of importance in reversing the immunosuppression associated with septic complications.

11.
Mil Med Res ; 10(1): 27, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337301

RESUMO

BACKGROUND: Sustained yet intractable immunosuppression is commonly observed in septic patients, resulting in aggravated clinical outcomes. However, due to the substantial heterogeneity within septic patients, precise indicators in deciphering clinical trajectories and immunological alterations for septic patients remain largely lacking. METHODS: We adopted cross-species, single-cell RNA sequencing (scRNA-seq) analysis based on two published datasets containing circulating immune cell profile of septic patients as well as immune cell atlas of murine model of sepsis. Flow cytometry, laser scanning confocal microscopy (LSCM) imaging and Western blotting were applied to identify the presence of S100A9+ monocytes at protein level. To interrogate the immunosuppressive function of this subset, splenic monocytes isolated from septic wild-type or S100a9-/- mice were co-cultured with naïve CD4+ T cells, followed by proliferative assay. Pharmacological inhibition of S100A9 was implemented using Paquinimod via oral gavage. RESULTS: ScRNA-seq analysis of human sepsis revealed substantial heterogeneity in monocyte compartments following the onset of sepsis, for which distinct monocyte subsets were enriched in disparate subclusters of septic patients. We identified a unique monocyte subset characterized by high expression of S100A family genes and low expression of human leukocyte antigen DR (HLA-DR), which were prominently enriched in septic patients and might exert immunosuppressive function. By combining single-cell transcriptomics of murine model of sepsis with in vivo experiments, we uncovered a similar subtype of monocyte significantly associated with late sepsis and immunocompromised status of septic mice, corresponding to HLA-DRlowS100Ahigh monocytes in human sepsis. Moreover, we found that S100A9+ monocytes exhibited profound immunosuppressive function on CD4+ T cell immune response and blockade of S100A9 using Paquinimod could partially reverse sepsis-induced immunosuppression. CONCLUSIONS: This study identifies HLA-DRlowS100Ahigh monocytes correlated with immunosuppressive state upon septic challenge, inhibition of which can markedly mitigate sepsis-induced immune depression, thereby providing a novel therapeutic strategy for the management of sepsis.


Assuntos
Monócitos , Sepse , Humanos , Animais , Camundongos , Monócitos/química , Monócitos/metabolismo , Modelos Animais de Doenças , Antígenos HLA-DR/análise , Antígenos HLA-DR/metabolismo , Sepse/genética
12.
Front Immunol ; 13: 891024, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619710

RESUMO

Sepsis represents a life-threatening organ dysfunction due to an aberrant host response. Of note is that majority of patients have experienced a severe immune depression during and after sepsis, which is significantly correlated with the occurrence of nosocomial infection and higher risk of in-hospital death. Nevertheless, the clinical sign of sepsis-induced immune paralysis remains highly indetectable and ambiguous. Given that, specific yet robust biomarkers for monitoring the immune functional status of septic patients are of prominent significance in clinical practice. In turn, the stratification of a subgroup of septic patients with an immunosuppressive state will greatly contribute to the implementation of personalized adjuvant immunotherapy. In this review, we comprehensively summarize the mechanism of sepsis-associated immunosuppression at the cellular level and highlight the recent advances in immune monitoring approaches targeting the functional status of both innate and adaptive immune responses.


Assuntos
Síndromes de Imunodeficiência , Sepse , Mortalidade Hospitalar , Humanos , Tolerância Imunológica , Terapia de Imunossupressão , Monitorização Imunológica
13.
Front Mol Biosci ; 9: 955991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032662

RESUMO

Sepsis, a life-threatening disease caused by dysregulated host response to infection, is a major public health problem with a high mortality and morbidity rate. Pyroptosis is a new type of programmed cell death discovered in recent years, which has been proved to play an important role in sepsis. Nevertheless, there is no comprehensive report, which can help researchers get a quick overview and find research hotspots. Thus, we aimed to identify the study status and knowledge structures of pyroptosis in sepsis and summarize the key mechanism of pyroptosis in sepsis. The data were retrieved and downloaded from the WOS database. Software such as VOSviewer was used to analyze these publications. Key genes were picked out by using (https://www.genecards.org) and (http://www.bioinformatics.com). Then, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to performed these key genes. From 2011 to 2021, a total of 299 papers met the search criteria, and the global interest in pyroptosis in sepsis measured by the value of (RRI) has started to increase since 2016. China ranked first in the number of publications, followed by the USA. The journal Frontiers in Immunology published the most relevant articles. Through keyword co-occurrence analysis, the high-frequency subject terms were divided into three clusters like "animal research", "cell research," and "molecular research" clusters. "mir," "aki," "monocyte," and "neutrophil" were the newest keywords that may be the hotspot. In addition, a total of 15 genes were identified as hub genes. TNF, IL-1ß, AKT1, CASP1, and STAT3 were highly expressed in lung tissues, thymus tissues, and lymphocytes. KEGG analysis indicated that pyroptosis may play a vital role in sepsis via the NOD, PI3K/AKT, and MAPK/JNK pathways. Through the quantitative analysis of the literature on pyroptosis in sepsis, we revealed the current status and hotspots of research in this field and provided some guidance for further studies.

14.
Front Public Health ; 10: 939053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003630

RESUMO

Introduction: As the first bibliometric analysis of COVID-19 and immune responses, this study will provide a comprehensive overview of the latest research advances. We attempt to summarize the scientific productivity and cooperation across countries and institutions using the bibliometric methodology. Meanwhile, using clustering analysis of keywords, we revealed the evolution of research hotspots and predicted future research focuses, thereby providing valuable information for the follow-up studies. Methods: We selected publications on COVID-19 and immune response using our pre-designed search strategy. Web of Science was applied to screen the eligible publications for subsequent bibliometric analyses. GraphPad Prism 8.0, VOSviewer, and CiteSpace were applied to analyze the research trends and compared the contributions of countries, authors, institutions, and journals to the global publications in this field. Results: We identified 2,200 publications on COVID-19 and immune response published between December 1, 2019, and April 25, 2022, with a total of 3,154 citations. The United States (611), China (353), and Germany (209) ranked the top three in terms of the number of publications, accounting for 53.3% of the total articles. Among the top 15 institutions publishing articles in this area, four were from France, four were from the United States, and three were from China. The journal Frontiers in Immunology published the most articles (178) related to COVID-19 and immune response. Alessandro Sette (31 publications) from the United States were the most productive and influential scholar in this field, whose publications with the most citation frequency (3,633). Furthermore, the development and evaluation of vaccines might become a hotspot in relevant scope. Conclusions: The United States makes the most indispensable contribution in this field in terms of publication numbers, total citations, and H-index. Although publications from China also take the lead regarding quality and quantity, their international cooperation and preclinical research need to be further strengthened. Regarding the citation frequency and the total number of published articles, the latest research progress might be tracked in the top-ranking journals in this field. By analyzing the chronological order of the appearance of retrieved keywords, we speculated that vaccine-related research might be the novel focus in this field.


Assuntos
Pesquisa Biomédica , COVID-19 , Bibliometria , Alemanha , Humanos , Publicações , Estados Unidos
15.
Front Immunol ; 13: 1084568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685531

RESUMO

Objective: As a common yet intractable complication of severe sepsis, acute respiratory distress syndrome (ARDS) is closely associated with poor clinical outcomes and elevated medical expenses. The aim of the current study is to generate a model combining transcriptional biomarkers and clinical parameters to alarm the development of ARDS in septic patients. Methods: Gene expression profile (GSE66890) was downloaded from the Gene Expression Omnibus database and clinical data were extracted. Differentially expressed genes (DEGs) from whole blood leukocytes were identified between patients with sepsis alone and septic patients who develop ARDS. ARDS prediction model was constructed using backward stepwise regression and Akaike Information Criterion (AIC). Meanwhile, a nomogram based on this model was established, with subsequent internal validation. Results: A total of 57 severe septic patients were enrolled in this study, and 28 (49.1%) developed ARDS. Based on the differential expression analysis, six DEGs (BPI, OLFM4, LCN2, CD24, MMP8 and MME) were screened. According to the outcome prediction model, six valuable risk factors (direct lung injury, shock, tumor, BPI, MME and MMP8) were incorporated into a nomogram, which was used to predict the onset of ARDS in septic patients. The calibration curves of the nomogram showed good consistency between the probabilities and observed values. The decision curve analysis also revealed the potential clinical usefulness of the nomogram. The area under the receiver operating characteristic (AUROC) for the prediction of ARDS occurrence in septic patients by the nomogram was 0.86 (95% CI = 0.767-0.952). A sensitivity analysis showed that the AUROC for the prediction of ARDS development in septic patients without direct lung injury was 0.967 (95% CI = 0.896-1.0). Conclusions: The nomogram based on transcriptional biomarkers and clinical parameters showed a good performance for the prediction of ARDS occurrence in septic patients.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Sepse , Humanos , Metaloproteinase 8 da Matriz , Sepse/diagnóstico , Sepse/genética , Sepse/complicações , Biomarcadores , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/complicações
16.
Theranostics ; 12(10): 4606-4628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832091

RESUMO

Rationale: Evident immunosuppression has been commonly seen among septic patients, and it is demonstrated to be a major driver of morbidity. Nevertheless, a comprehensive view of the host immune response to sepsis is lacking as the majority of studies on immunosuppression have focused on a specific type of immune cells. Methods: We applied multi-compartment, single-cell RNA sequencing (scRNA-seq) to dissect heterogeneity within immune cell subsets during sepsis progression on cecal ligation and puncture (CLP) mouse model. Flow cytometry and multiplex immunofluorescence tissue staining were adopted to identify the presence of 'mature DCs enriched in immunoregulatory molecules' (mregDC) upon septic challenge. To explore the function of mregDC, sorted mregDC were co-cultured with naïve CD4+ T cells. Intracellular signaling pathways that drove mregDC program were determined by integrating scRNA-seq and bulk-seq data, combined with inhibitory experiments. Results: ScRNA-seq analysis revealed that sepsis induction was associated with substantial alterations and heterogeneity of canonical immune cell types, including T, B, natural killer (NK), and myeloid cells, across three immune-relevant tissue sites. We found a unique subcluster of conventional dendritic cells (cDCs) that was characterized by specific expression of maturation- and migration-related genes, along with upregulation of immunoregulatory molecules, corresponding to the previously described 'mregDCs' in cancer. Flow cytometry and in stiu immunofluorescence staining confirmed the presence of sepsis-induced mregDC at protein level. Functional experiments showed that sepsis-induced mregDCs potently activated naive CD4+ T cells, while promoted CD4+ T cell conversion to regulatory T cells. Further observations indicated that the mregDC program was initiated via TNFRSF-NF-κB- and IFNGR2-JAK-STAT3-dependent pathways within 24 h of septic challenge. Additionally, we confirmed the detection of mregDC in human sepsis using publicly available data from a recently published single-cell study of COVID-19 patients. Conclusions: Our study generates a comprehensive single-cell immune landscape for polymicrobial sepsis, in which we identify the significant alterations and heterogeneity in immune cell subsets that take place during sepsis. Moreover, we find a conserved and potentially targetable immunoregulatory program within DCs that associates with hyperinflammation and organ dysfunction early following sepsis induction.


Assuntos
COVID-19 , Sepse , Animais , Células Dendríticas , Perfilação da Expressão Gênica , Humanos , Camundongos , Linfócitos T Reguladores
17.
Front Med (Lausanne) ; 9: 783234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242774

RESUMO

BACKGROUND: The incidence of coagulopathy, which was responsible for poor outcomes, was commonly seen among patients with sepsis. In the current study, we aim to determine whether the presence of sepsis-associated coagulopathy (SAC) predicts the clinical outcomes among critically ill patients with postoperative sepsis. METHODS: We conducted a single-center retrospective cohort study by including patients with sepsis admitted to surgical ICU of Chinese PLA General Hospital from January 1, 2014 to December 31, 2018. Baseline characteristics and clinical outcomes were compared with respect to the presence of SAC. Kaplan-Meier analysis was applied to calculate survival rate, and Log-rank test was carried out to compare the differences between two groups. Furthermore, multivariable Cox and logistic and linear regression analysis were performed to assess the relationship between SAC and clinical outcomes, including hospital mortality, development of septic shock, and length of hospital stay (LOS), respectively. Additionally, both sensitivity and subgroup analyses were performed to further testify the robustness of our findings. RESULTS: A total of 175 patients were included in the current study. Among all included patients, 41.1% (72/175) ICU patients were identified as having SAC. In-hospital mortality rates were significantly higher in the SAC group when compared to that of the No SAC group (37.5% vs. 11.7%; p < 0.001). By performing univariable and multivariable regression analyses, presence of SAC was demonstrated to significantly correlate with an increased in-hospital mortality for patients with sepsis in surgical ICU [Hazard ratio (HR), 3.75; 95% Confidence interval (CI), 1.90-7.40; p < 0.001]. Meanwhile, a complication of SAC was found to be the independent predictor of the development of septic shock [Odds ratio (OR), 4.11; 95% CI, 1.81-9.32; p = 0.001], whereas it was not significantly associated with prolonged hospital LOS (OR, 0.97; 95% CI, 0.83-1.14; p = 0.743). CONCLUSION: The presence of SAC was significantly associated with increased risk of in-hospital death and septic shock among postoperative patients with sepsis admitted to ICU. Moreover, there was no statistical difference of hospital LOS between the SAC and no SAC groups.

18.
Burns Trauma ; 9: tkab040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901285

RESUMO

BACKGROUND: The objective of this study was to evaluate the clinical efficacy of thiamine and vitamin C with or without hydrocortisone coadministration on the treatment of sepsis and septic shock. METHODS: MEDLINE, EMBASE and CENTRAL databases were searched for randomized controlled trials (RCTs) that made a comparative study between the combination therapy of vitamin C and thiamine with or without hydrocortisone and the administration of placebo in patients with sepsis or septic shock. Two reviewers independently performed study selection, data extraction and quality assessment. Both short-term mortality and change in the sequential organ failure assessment (SOFA) score from baseline (delta SOFA) were set as the primary outcomes. Secondary endpoints included intensive care unit (ICU) mortality, new onset of acute kidney injury, total adverse events, ICU and hospital length of stay, duration of vasopressor usage and ventilator-free days. Meanwhile, trial sequential analysis was conducted for primary outcomes. RESULTS: Eight RCTs with 1428 patients were included in the current study. The results showed no significant reduction of short-term mortality in sepsis and septic shock patients who received combination therapy of vitamin C and thiamine with or without hydrocortisone compared to those with placebo {risk ratio (RR), 1.02 [95% confidence interval (CI), 0.87 to 1.20], p = 0.81, I 2 = 0%; risk difference (RD), 0 [95% CI, -0.04 to 0.05]}. Nevertheless, the combination therapy was associated with significant reduction in SOFA score [mean difference (MD), -0.63, (95% CI, -0.96 to -0.29, p < 0.001, I 2 = 0%] and vasopressors duration (MD, -22.11 [95% CI, -30.46 to -13.77], p < 0.001, I 2 = 6%). Additionally, there were no statistical differences in the pooled estimate for other outcomes. CONCLUSIONS: In the current meta-analysis, the combination therapy of vitamin C and thiamine, with or without hydrocortisone had no impact on short-term mortality when compared with placebo, but was associated with significant reduction in SOFA score among patients with sepsis and septic shock.

19.
Front Genet ; 11: 245, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265986

RESUMO

Autophagy is a self-degradation process that maintains homeostasis against stress in cells. Autophagy dysfunction plays a central role in the development of tumors, such as colorectal cancer (CRC). In this study, autophagy-related differentially expressed genes, their downstream functions, and upstream regulatory factors including RNA-binding proteins (RBP) involved in programmed cell death in the CRC were investigated. Transcription factors (TFs) and miRNAs have been shown to mainly regulate autophagy genes. Interestingly, we found that some of the RBP in the CRC, such as DDX17, SETDB1, and POLR3A, play an important regulatory role in maintaining autophagy at a basal level during growth by acting as TFs that regulate autophagy. Promoter methylations showed negative regulations on differentially expressed autophagy gene (DEAG), while copy number variations revealed a positive role in them. A proportional hazards regression analysis indicated that using autophagy-related prognostic signature can divide patients into high-risk and low-risk groups. Autophagy associated FDA-approved drugs were studied by a prognostic network. This would contribute to the identifications of new potential molecular therapeutic targets for CRC.

20.
Biomed Res Int ; 2020: 8595473, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280704

RESUMO

Noncoding RNAs (ncRNAs), especially microRNA (miRNA) and long noncoding RNA (lncRNA), have an impact on a variety of important biological processes during colon adenocarcinoma (COAD) progression. This includes chromatin organization, transcriptional and posttranscriptional regulation, and cell-cell signaling. The aim of this study is to identify the ncRNA-regulated modules that accompany the progression of COAD and to analyze their mechanisms, in order to screen the potential prognostic biomarkers for COAD. An integrative molecular analysis was carried out to identify the crosstalks of gene modules between different COAD stages, as well as the essential ncRNAs in the posttranscriptional regulation of these modules. 31 ncRNA regulatory modules were found to be significantly associated with overall survival in COAD patients. 17 out of the 31 modules (in which ncRNAs played essential roles) had improved the predictive ability for COAD patient survival compared to only the mRNAs of those modules, which were enriched in the core cancer hallmark pathways with closer interactions. These suggest that the ncRNAs' regulatory modules not only exhibit close relation to COAD progression but also reflect the dynamic significant crosstalk of genes in the modules to the different malignant extent of COAD.


Assuntos
Adenocarcinoma/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , RNA não Traduzido/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/genética , Colo/patologia , Neoplasias do Colo/patologia , Progressão da Doença , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Estadiamento de Neoplasias , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Análise de Sobrevida , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA