Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 203(2): 378-387, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24787280

RESUMO

The Scholander-Hammel pressure chamber has been used in thousands of papers to measure osmotic pressure, πc , turgor pressure, Pt , and bulk modulus of elasticity, ε, of leaf cells by pressure-volume (PV) curve analysis. PV analysis has been questioned in the past. In this paper we use micromechanical analysis of leaf cells to examine the impact on PV curve analysis of negative turgor in living cells (Pt ). Models predict negative Pt (-0.1 to -1.8 MPa) depending on leaf cell size and shape in agreement with experimental values reported by J. J. Oertli. Modeled PV curves have linear regions even when Pt is quite negative, contrary to the arguments of M.T. Tyree. Negative Pt is totally missed by PV curve analysis and results in large errors in derived πc and Pt but smaller errors in ε. A survey of leaf cell sizes vs habitat (arid, temperate, and rainforest), suggests that the majority of published PV curves result in errors of 0.1-1.8 MPa in derived πc and Pt , whereby the error increases with decreasing cell size. We propose that small cell size in leaves is an ecological adaptation that permits plants to endure negative values of water potential with relatively little water loss.


Assuntos
Células Vegetais/fisiologia , Folhas de Planta/fisiologia , Allium/citologia , Tamanho Celular , Simulação por Computador , Análise de Elementos Finitos , Folhas de Planta/citologia , Pressão , Robinia/citologia
2.
Nanotechnology ; 24(50): 505701, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24270798

RESUMO

Optical microscopy (OM) methods have been commonly used as a convenient means for locating and identifying few-layer graphene (FLG) on SiO2/Si substrates. However, it is less clear how reliably optical images of FLG could be used to determine the sample thickness. In this work, various OM methods based on color differences and color contrasts are presented and their reliabilities are evaluated. Our analysis shows that these color-based OM methods depend sensitively on certain parameters of the measuring system, particularly the light source and the reference substrate. These parameters have usually been overlooked and less controlled in routine experiments. From evaluating the performance of these OM methods with both virtual and real FLG samples, we propose some practical guidelines for minimizing the impact of these less-controlled experimental parameters and provide a user-friendly MATLAB script for facilitating the implementation.

3.
Nanotechnology ; 22(26): 265706, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576792

RESUMO

We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure.

4.
J Integr Plant Biol ; 50(2): 168-73, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18713438

RESUMO

Leaf morphological and anatomical structure and carbon isotope ratio (delta13C) change with increasing tree height. To determine how tree height affects leaf characteristics, we measured the leaf area, specific leaf mass (ratio of leaf mass to leaf area [LMA]), thickness of the total leaf, cuticle, epidermis, palisade and sponge mesophyll, stomata traits and delta13C at different heights of Parashorea chinensis with methods of light and scanning electron microscopy (SEM) and isotope-ratio mass spectrometry. The correlation and stepwise regression between tree height and leaf structure traits were carried out with SPSS software. The results showed that leaf structures and delta13C differed significantly along the tree height gradient. The leaf area, thickness of sponge mesophyll and size of stomata decreased with increasing height, whereas the thickness of lamina, palisade mesophyll, epidermis, and cuticle, ratios of palisade to spongy thickness, density of stomata and vascular bundles, LMA and delta13C increased with tree height. Tree height showed a significant relationship with all leaf indices and the most significant relationship was with epidermis thickness, leaf area, cuticle thickness, delta13C. The delta13C value showed a significantly positive relationship with LMA (R = 0.934). Our results supported the hypothesis that the leaf structures exhibited more xeromorphic characteristics with the increasing gradient of tree height.


Assuntos
Dipterocarpaceae/anatomia & histologia , Dipterocarpaceae/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Árvores/anatomia & histologia , Isótopos de Carbono , China , Estômatos de Plantas/ultraestrutura
5.
ACS Appl Mater Interfaces ; 9(34): 28596-28603, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28772073

RESUMO

The unique structure of a vertically aligned carbon nanotube (VACNT) array makes it behave most similarly to a blackbody. It is reported that the optical absorptivity of an extremely black VACNT array is about 0.98-0.99 over a large spectral range of 200 nm-200 µm, inspiring us to explore the performance of VACNT arrays in solar energy harvesting. In this work, we report the highly efficient steam generation simply by laminating a layer of VACNT array on the surface of water to harvest solar energy. It is found that under solar illumination the temperature of upper water can significantly increase with obvious water steam generated, indicating the efficient solar energy harvesting and local temperature rise by the thin layer of VACNTs. We found that the evaporation rate of water assisted by VACNT arrays is 10 times that of bare water, which is the highest ratio for solar-thermal-steam generation ever reported. Remarkably, the solar thermal conversion efficiency reached 90%. The excellent performance could be ascribed to the strong optical absorption and local temperature rise induced by the VACNT layer, as well as the ultrafast water transport through the VACNT layer due to the frictionless wall of CNTs. Based on the above, we further demonstrated the application of VACNT arrays in solar-driven desalination.

6.
ACS Nano ; 9(11): 10867-75, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26468735

RESUMO

Nanomaterials serve as promising candidates for strain sensing due to unique electromechanical properties by appropriately assembling and tailoring their configurations. Through the crisscross interlacing of graphene microribbons in an over-and-under fashion, the obtained graphene woven fabric (GWF) indicates a good trade-off between sensitivity and stretchability compared with those in previous studies. In this work, the function of woven fabrics for highly sensitive strain sensing is investigated, although network configuration is always a strategy to retain resistance stability. The experimental and simulation results indicate that the ultrahigh mechanosensitivity with gauge factors of 500 under 2% strain is attributed to the macro-woven-fabric geometrical conformation of graphene, which induces a large interfacial resistance between the interlaced ribbons and the formation of microscale-controllable, locally oriented zigzag cracks near the crossover location, both of which have a synergistic effect on improving sensitivity. Meanwhile, the stretchability of the GWF could be tailored to as high as over 40% strain by adjusting graphene growth parameters and adopting oblique angle direction stretching simultaneously. We also demonstrate that sensors based on GWFs are applicable to human motion detection, sound signal acquisition, and spatially resolved monitoring of external stress distribution.


Assuntos
Eletrônica/métodos , Grafite/química , Nanotecnologia/métodos , Pele/metabolismo , Têxteis , Tato , Adesividade , Humanos , Polímeros/química
7.
ACS Nano ; 5(5): 3858-66, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21476510

RESUMO

High-performance sealants using rubber composites containing multiwalled carbon nanotubes (MWNTs) were developed in order to probe and excavate oil in deeper wells. However, the stress-strain behavior and the reinforcing mechanism of highly concentrated MWNT/rubber composites subjected to large deformation remain largely unexplored. Here we report on the complete stress-strain relationships of MWNT/rubber composites under uniaxial tension before rupture, with a suggestion of a novel reinforcement effect of high concentration of MWNTs. A theoretical model is developed to understand the reinforcing mechanism and estimate the mechanical properties of MWNT/rubber composites under large deformation. We have demonstrated that persistence length and reorientation of MWNTs during stretch have a significant impact on mechanical properties, such as the modulus of the rubber composite. These results provide guidelines for developing MWNT-reinforced composites to achieve desired nonlinear and extreme mechanical performance for a wide range of applications.


Assuntos
Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Borracha/química , Simulação por Computador , Módulo de Elasticidade , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Estresse Mecânico , Propriedades de Superfície , Resistência à Tração
8.
Langmuir ; 23(15): 8212-6, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17583919

RESUMO

To understand why lotus leaf surfaces have a two-scale structure, we explore in this paper two stability mechanisms. One is the stability of the Cassie-Baxter wetting mode that generates the superhydrophobicity. A recent quantitative study (Zheng et al., Langmuir 2005, 21, 12207) showed that the larger the slenderness ratio of the surface structures was, the more stable the Cassie-Baxter wetting mode would be. On the other hand, it is well-known that more slender surface structures can only sustain lower critical water pressures for structure buckling, or Euler instability, while in the natural environments, the water pressure impacting on the lotus surface can reach a fairly high value (105 Pa in a heavy rain). Our analysis reveals that the two-scale structure of the lotus leaf surfaces is necessary for keeping both the structure and the superhydrophobicity stable. Furthermore, we find that the water-air interfacial tension makes the slender surface structure more instable and the two-scale structure a necessity.

9.
Langmuir ; 23(9): 4892-6, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17385899

RESUMO

Water striders are a type of insect with the remarkable ability to stand effortlessly and walk quickly on water. This article reports the water repellency mechanism of water strider legs. Scanning electron microscope (SEM) observations reveal the uniquely hierarchical structure on the legs, consisting of numerous oriented needle-shaped microsetae with elaborate nanogrooves. The maximal supporting force of a single leg against water surprisingly reaches up to 152 dynes, about 15 times the total body weight of this insect. We theoretically demonstrate that the cooperation of nanogroove structures on the oriented microsetae, in conjunction with the wax on the leg, renders such water repellency. This finding might be helpful in the design of innovative miniature aquatic devices and nonwetting materials.


Assuntos
Extremidades/anatomia & histologia , Insetos/anatomia & histologia , Animais , Peso Corporal , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Sensibilidade e Especificidade , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA