Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
HIV Med ; 25(3): 361-369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990782

RESUMO

BACKGROUND: People living with HIV (PLWH) and receiving antiretroviral therapy (ART) have a goal of achieving and maintaining viral suppression; however, the existence of PLWH that show events of low-level viremia (LLV) between 50 and 1000 copies/mL and with different virological consequences have been observed. Moreover, some reports indicate that LLV status can lead to residual immune activation and inflammation, leading to a higher occurrence of non-AIDS-defining events (nADEs) and other adverse clinical outcomes. Until now, however, published data have shown controversial results that hinder understanding of this phenomenon's actual cause(s) and origin(s). Integrase strand transfer inhibitors (INSTIs)-based therapies could lead to lower LLV over time and, therefore, more effective virological control. OBJECTIVES: This review aims to assess recent findings to provide a view of the clinical significance and management of low-level HIV viremia in the era of INSTIs.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Inibidores de Integrase de HIV , Humanos , Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Viremia/tratamento farmacológico , Relevância Clínica , Carga Viral , Integrases/uso terapêutico , Inibidores de Integrase de HIV/uso terapêutico
2.
Microb Pathog ; : 107014, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39396689

RESUMO

Mycobacterium tuberculosis (Mtb), the main pathogen responsible for the high mortality and morbidity of tuberculosis (TB) worldwide, primarily targets and invades macrophages. Infected macrophages activate a series of immune mechanisms to clear Mtb, however, Mtb evades host immune surveillance through subtle immune escape strategies to create a microenvironment conducive to its own proliferation, growth, and dissemination, while inducing immune cell death. The course of TB is strongly correlated with the form of cell death, including apoptosis, pyroptosis, and necrosis. Recent studies have revealed that ferroptosis, a novel type of programmed cell death characterized by iron-dependent lipid peroxidation, is closely linked to the regulatory mechanisms of TB. The central role of ferroptosis in the pathologic process of TB is increasingly becoming a focal point for exploring new therapeutic targets in this field. This paper will delve into the dynamic game between Mtb and host immune cells, especially the role of ferroptosis in the pathogenesis of TB. At the same time, this paper will analyze the regulatory pathways of ferroptosis and provide unique insights and innovative perspectives for TB therapeutic strategies based on the ferroptosis mechanism. This study not only expands the theoretical basis of TB treatment, but also points out the direction of future drug development, providing new possibilities for overcoming this global health problem.

3.
BMC Infect Dis ; 24(1): 1100, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363255

RESUMO

Nocardia farcinica is the most pathogenic Nocardia, which is easy to disseminate. It can be caused by trauma, and even lead to severe lung or central nervous system infection. This report covers a case of Nocardia brain abscess in an HIV patient, who underwent resection of the brain abscess, followed by anti-infective therapy with sulfamethoxazole and meropenem, and eventually made a good recovery. The mortality rate of Nocardia farcinica brain abscess has been attributed to the severity of the underlying disease, the difficulty in identifying the pathogen, and its inherent resistance to antibiotics, leading to inappropriate or late initiation of treatment. Medication should follow the principle of sufficient dosage and sufficient course of treatment.


Assuntos
Antibacterianos , Abscesso Encefálico , Infecções por HIV , Nocardiose , Nocardia , Humanos , Antibacterianos/uso terapêutico , Abscesso Encefálico/microbiologia , Abscesso Encefálico/tratamento farmacológico , Infecções por HIV/complicações , Meropeném/uso terapêutico , Meropeném/administração & dosagem , Nocardia/isolamento & purificação , Nocardiose/tratamento farmacológico , Nocardiose/microbiologia , Nocardiose/complicações , Sulfametoxazol/uso terapêutico
4.
Nano Lett ; 23(13): 6193-6201, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37387510

RESUMO

Therapy-induced DNA damage is the most common strategy to inhibit tumor cell proliferation, but the therapeutic efficacy is limited by DNA repair machinery. Carrier-free nanoproteolysis targeting chimeras (PROTACs), designed as SDNpros, have been developed to enhance photodynamic therapy (PDT) by blocking the DNA damage repair pathway through BRD4 degradation. Specifically, SDNpros are constructed through noncovalent interactions between the photosensitizer of chlorine e6 (Ce6) and PROTACs of BRD4 degrader (dBET57) via self-assembly. SDNpro has favorable dispersibility and a uniform nanosize distribution without drug excipients. Upon light irradiation, SDNpro produces abundant reactive oxygen species (ROS) to induce DNA oxidative damage. Meanwhile, the DNA repair pathway would be interrupted by the concurrent degradation of BRD4, which could intensify the oxidative DNA damage and elevate PDT efficiency. Beneficially, SDNpro suppresses tumor growth and avoids systemic side effects, providing a promising strategy to promote the clinical translation of PROTACs for tumor treatment.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Proteínas Nucleares , Excipientes , Linhagem Celular Tumoral , Fatores de Transcrição , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Dano ao DNA , Porfirinas/uso terapêutico
5.
Small ; 19(3): e2205694, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36366925

RESUMO

Photodynamic therapy (PDT) can generate reactive oxygen species (ROS) to cause cell apoptosis and induce immunogenic cell death (ICD) to activate immune response, becoming a promising antitumor modality. However, the overexpressions of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand 1 (PD-L1) on tumor cells would reduce cytotoxic T cells infiltration and inhibit the immune activation. In this paper, a simple but effective nanosystem is developed to solve these issues for enhanced photodynamic immunotherapy. Specifically, it has been constructed a self-delivery biomedicine (CeNB) based on photosensitizer chlorine e6 (Ce6), IDO inhibitor (NLG919), and PD1/PDL1 blocker (BMS-1) without the need for extra excipients. Of note, CeNB possesses fairly high drug content (nearly 100%), favorable stability, and uniform morphology. More importantly, CeNB-mediated IDO inhibition and PD1/PDL1 blockade greatly improve the immunosuppressive tumor microenvironments to promote immune activation. The PDT of CeNB not only inhibits tumor proliferation but also induces ICD response to activate immunological cascade. Ultimately, self-delivery CeNB tremendously suppresses the tumor growth and metastasis while leads to a minimized side effect. Such simple and effective antitumor strategy overcomes the therapeutic resistance against PDT-initiated immunotherapy, suggesting a potential for metastatic tumor treatment in clinic.


Assuntos
Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Linhagem Celular Tumoral , Inibidores Enzimáticos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Microambiente Tumoral
6.
Small ; 18(15): e2107467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224854

RESUMO

Abnormal tumor metabolism causes the hypoxic microenvironment, which greatly limits the efficacy of photodynamic therapy (PDT). In this work, a strategy of metabolic reprogramming is proposed to economize O2 for enhanced PDT against hypoxic tumors. The carrier-free O2 -economizer (designated as LonCe) is prepared based on the metabolic antitumor drug of Lonidamine (Lon) and the photosensitizer of chlorin e6 (Ce6). By virtue of intermolecular interactions, Lon and Ce6 self-assemble into nanosized LonCe with favorable stability and high drug contents. Compared with Ce6, LonCe exhibits an improved cellular uptake and photodynamic property for tumor treatment. Moreover, LonCe is capable of inhibiting cell metabolism and mitochondrial respiration to remit the tumor hypoxia, which would promote reactive oxygen species (ROS) production and elevate the PDT efficacy on tumor suppression. In vivo experiments indicate that intravenously injected LonCe prefers to accumulate at the tumor site for highly efficient PDT regardless of the hypoxic environment. Besides, the self-delivery LonCe is fabricated without any carriers, which avoids the excipients induced system toxicity and immunogenicity in vivo. This carrier-free nanomedicine with cell respiratory inhibition mechanism would expedite the development and clinical translation of photodynamic nanoplatforms in tumor treatment.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Excipientes , Humanos , Hipóxia/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Hipóxia Tumoral
7.
Small ; 17(40): e2102470, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34480417

RESUMO

Tumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions. Without additional carriers, nanoscale PhotoSyn possess an extremely high drug loading rate (up to 100%) and they are found to be fairly stable in aqueous phase with a uniform size distribution. Intravenously injected PhotoSyn prefer to accumulate at tumor sites for effective cellular uptake. More importantly, TH588-mediated MTH1 inhibition could destroy the ROS-defensing system of tumor cells by preventing the elimination of 8-oxo-2'-deoxyguanosine triphosphate (8-oxo-dG), thereby exacerbating the oxidative DNA damage induced by the photodynamic therapy (PDT) of Ce6 under light irradiation. As a consequence, PhotoSyn exhibit enhanced photo toxicity and a significant antitumor effect. This amplified oxidative damage strategy improves the PDT efficiency with a reduced side effect by increasing the lethality of ROS without generating superabundant ROS, which would provide a new insight for developing self-delivery nanoplatforms in photodynamic tumor therapy in clinic.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Estresse Oxidativo , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio
8.
Nano Lett ; 20(3): 2062-2071, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32096643

RESUMO

Tumor hypoxia is the Achilles heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based self-delivery nanomedicine (designated as ACSN) were prepared via π-π stacking and hydrophobic interaction for O2-economized PDT against hypoxic tumors. Specifically, carrier-free ACSN exhibited an extremely high drug loading rate and avoided the excipient-induced systemic toxicity. Moreover, ACSN not only dramatically improved the solubility and stability of ATO and Ce6 but also enhanced the cellular internalization and intratumoral permeability. Abundant investigations confirmed that ACSN effectively suppressed the oxygen consumption to reverse the tumor hypoxia by inhibiting mitochondrial respiration. Benefiting from the synergistic mechanism, an enhanced PDT effect of ACSN was observed on the inhibition of tumor growth. This self-delivery system for oxygen-economized PDT might be a potential appealing clinical strategy for tumor eradication.


Assuntos
Neoplasias Mamárias Experimentais , Nanomedicina , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologia
9.
J Clin Microbiol ; 57(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30333128

RESUMO

The sustained increase in the incidence of nontuberculous mycobacterial (NTM) infection and the difficulty in distinguishing these infections from tuberculosis constitute an urgent need for NTM species-level identification. The MeltPro Myco assay is the first diagnostic system that identifies 19 clinically relevant mycobacteria in a single reaction based on multicolor melting curve analysis run on a real-time PCR platform. The assay was comprehensively evaluated regarding its analytical and clinical performances. The MeltPro Myco assay accurately identified 51 reference mycobacterial strains to the species/genus level and showed no cross-reactivity with 16 nonmycobacterial strains. The limit of detection was 300 bacilli/ml, and 1% of the minor species was detected in the case of mixed infections. Clinical studies using 1,163 isolates collected from five geographically distinct health care units showed that the MeltPro Myco assay correctly identified 1,159 (99.7%) samples. Further testing with 94 smear-positive sputum samples showed that all samples were correctly identified. Additionally, the entire assay can be performed within 3 h. The results of this study confirmed the efficacy of this assay in the reliable identification of mycobacteria, suggesting that it might potentially be used as a screening tool in regions endemic for tuberculosis.


Assuntos
Técnicas Microbiológicas/métodos , Técnicas de Diagnóstico Molecular/métodos , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Micobactérias não Tuberculosas/isolamento & purificação , Coinfecção/diagnóstico , Coinfecção/microbiologia , DNA Bacteriano/genética , DNA Espaçador Ribossômico/genética , Humanos , Técnicas Microbiológicas/normas , Técnicas de Diagnóstico Molecular/normas , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Escarro/microbiologia , Fatores de Tempo , Tuberculose/diagnóstico , Tuberculose/microbiologia
10.
J Clin Microbiol ; 56(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29875194

RESUMO

The direct repeat (DR) region in the Mycobacterium tuberculosis (MTB) genome is composed of highly polymorphic direct variant repeats, which are the basis of spacer oligonucleotide typing (spoligotyping) to study the population structure and epidemiology of M. tuberculosis However, the membrane hybridization-based detection format requires various post-PCR manipulations and is prone to carryover contamination, restricting its wide use in high-TB-burden and resource-limited countries. We developed a one-step spoligotyping protocol, termed McSpoligotyping, based on real-time PCR. The typing results can be generated within 3 h by a single step of DNA addition. When evaluated with a collection of 1,968 isolates of MTB, McSpoligotyping agreed 97.71% (1,923/1,968) by sample and 99.93% (84,568/84,624) by spacer with traditional spoligotyping. Sequencing results showed that McSpoligotyping was even more accurate than spoligotyping (99.34% versus 98.37%). Further exploration of the false results of McSpoligotyping revealed the presence of single-nucleotide polymorphisms in the DR region. We concluded that McSpoligotyping could be used in epidemiology studies of tuberculosis by taking advantage of the shortened procedure, ease of use, and compatibility of results with standard spoligotyping.


Assuntos
Epidemiologia Molecular/métodos , Tipagem Molecular/métodos , Mycobacterium tuberculosis/classificação , Tuberculose/microbiologia , DNA Bacteriano/genética , Genótipo , Humanos , Tipagem Molecular/normas , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Fatores de Tempo
11.
Antimicrob Agents Chemother ; 60(8): 4786-92, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27246779

RESUMO

Our study aims to identify the clinical breakpoints (CBPs) of second-line drugs (SLDs) above which standard therapy fails in order to improve multidrug-resistant tuberculosis (MDR-TB) treatment. MICs of SLDs were determined for M. tuberculosis isolates cultured from 207 MDR-TB patients in a prospective cohort study in China between January 2010 and December 2012. Classification and regression tree (CART) analysis was used to identify the CBPs predictive of treatment outcome. Of the 207 MDR-TB isolates included in the present study, the proportion of isolates above the critical concentration recommended by WHO ranged from 5.3% in pyrazinamide to 62.8% in amikacin. By selecting pyrazinamide as the primary node (CBP, 18.75 mg/liter), 72.1% of sputum culture conversions at month four could be predicted. As for treatment outcome, pyrazinamide (CBP, 37.5 mg/liter) was selected as the primary node to predict 89% of the treatment success, followed by ofloxacin (CBP, 3 mg/liter), improving the predictive capacity of the primary node by 10.6%. Adjusted by identified confounders, the CART-derived pyrazinamide CBP remained the strongest predictor in the model of treatment outcome. Our findings indicate that the critical breakpoints of some second-line drugs and PZA need to be reconsidered in order to better indicate MDR-TB treatment outcome.


Assuntos
Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto , Idoso , Amicacina/uso terapêutico , China , Quimioterapia Combinada/métodos , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Ofloxacino/uso terapêutico , Estudos Prospectivos , Pirazinamida/uso terapêutico , Resultado do Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto Jovem
13.
J Clin Microbiol ; 54(9): 2384-7, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27335152

RESUMO

We report here a ligation-based spoligotyping that can identify unamplified spacers in membrane-based spoligotyping due to asymmetric insertion of IS6110 in the direct repeat locus. Our typing yielded 84.4% (411/487) concordance with traditional typing and 100% (487/487) accuracy when confirmed by DNA sequencing.


Assuntos
Tipagem Molecular/métodos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Temperatura de Transição , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Sequências Repetitivas de Ácido Nucleico
14.
Yao Xue Xue Bao ; 50(12): 1622-4, 2015 Dec.
Artigo em Zh | MEDLINE | ID: mdl-27169286

RESUMO

This study was performed to investigate the chemical constituents in the twigs and leaves of Harrisonia perforate. Six compounds were isolated from the 95% EtOH extract of the twigs and leaves of Harrisonia perforate by silica gel, ODS, Sephadex LH-20 column chromatographies and preparative HPLC. On the basis of chemical properties and spectra data, these compounds were identified as harriperfin E (1), kihadanin A (2), kihadanin B (3), 6α-acetoxyobacunol acetate (4), gardaubryone C (5), and ß-sitosterol methyl ether (6), respectively. Compound 1 is a new chromone, and compounds 2-6 are isolated from this plant for the first time.


Assuntos
Compostos Fitoquímicos/química , Folhas de Planta/química , Simaroubaceae/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Compostos Fitoquímicos/isolamento & purificação
15.
Heliyon ; 10(11): e31729, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867990

RESUMO

We present an AIDS patient coinfected with Cytomegalovirus, Pneumocystis jirovecii pneumonia, nontuberculous mycobacteria, and COVID-19, who finally recovered from the coinfection. The 36-year-old man had two hospitalizations. In the first hospitalization, the patient was diagnosed with Cytomegalovirus, Pneumocystis jirovecii pneumonia, HIV, and COVID-19 quickly and accurately, and the corresponding treatment worked well. The second hospitalization can be divided into four stages: (1) Persistent fever period; (2) Persistent fever and Pulmonary Progression; (3) ICU period; and (4) Pneumothorax period. During the second hospitalization, the diagnosis of Mycobacterium colombiense was hard because the NGS, acid-fast bacilli, and culture of vomit, sputum, and bronchoalveolar lavage fluid were all negative. Still, we detected acid-fast bacilli in the blood mycobacterium culture. In conclusion, we report a severe pneumonia AIDS patient coinfected with Cytomegalovirus, Pneumocystis jirovecii pneumonia, COVID-19, and Mycobacterium colombiense who finally recovered from the disease. Nontuberculous mycobacteria infection is common in HIV patients, but bronchoalveolar lavage fluid NGS cannot identify nontuberculous mycobacteria in our report. Traditional blood culture was useful in detecting acid-fast bacilli in our study and then detecting the pathogens with NGS. Combining traditional microbial culture and emerging rapid NGS methods is more conducive to clinical diagnosis and treatment.

16.
Front Plant Sci ; 15: 1392934, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139727

RESUMO

Introduction: Rhizosphere effects (REs) have recently been identified as important regulators of root and microbial nutrient acquisition and are positively involved in nutrient cycling of belowground carbon (C), nitrogen (N), and phosphorus (P). Nutrient conditions of the fine roots and soil N are likely to influence REs. Still, it is unclear how REs of soil nutrients themselves variably impact the supply of nutrients to plants in terms of the responses to soil N due to succession. Methods: In this study, we applied both fine roots and extracellular enzymes for vector analysis and stoichiometry of N:P to explore the metabolic limitations of roots and rhizospheric soil microbes and their relationships with REs across five levels of soil N (0, 5, 10, 15, and 20 kg N m-2 year-1) along successional age classes of 42, 55, and 65 years in a Pinus tabuliformis forest. Results: Overall, the metabolism of root and rhizospheric soil microbes was mediated by soil N. N limitation of roots initially decreased before increasing, whereas that of microbes demonstrated opposite trends to the N levels owing to competition for inorganic N between them by REs of NO3 --N. However, N limitations of both roots and microbes were alleviated in young stands and increased with succession after the application of N. In addition, root N limitations were manipulated by REs of three different soil N-related indicators, i.e., total N, NH4 +-N, and NO3 --N. Rhizospheric soil microbial N limitation was almost unaffected by REs due to their strong homeostasis but was an important driver in the regulation of root N limitation. Discussion: Our results indicated that successional age was the most critical driver that directly and indirectly affected root N metabolism. However, the level of N application had a slight effect on root N limitation. Microbial N limitation and variations in the REs of N indicators regulated root N limitation in the rhizosphere. As a result, roots utilized REs to sequester N to alleviate N limitations. These findings contribute to novel mechanistic perspectives on the sustainability of N nutrition by regulating N cycling in a system of plant-soil-microbes in the rhizosphere to adapt to global N deposition or the heterogeneous distribution of bioavailable soil N with succession.

17.
Artigo em Inglês | MEDLINE | ID: mdl-39186224

RESUMO

For the past 20 years, transcatheter aortic valve replacement (TAVR) has been the treatment of choice for symptomatic aortic stenosis. The transfemoral (TF) access is considered the gold standard approach for TAVR. However, TF-TAVR cannot be performed in some patients; thus, alternative accesses are required. Our review paper generalises the TAVR accesses currently available, including the transapical, transaortic, trans-subclavian/axillary, transcarotid, transcaval, and suprasternal approaches. Their advantages and disadvantages have been analysed. Since there is no standard recommendation for an alternative approach, access selection depends on the expertise of the local cardiac team, patient characteristics, and access properties. Each TAVR centre is recommended to master a minimum of one non-TF access alternative. Of note, more evidence is required to delve into the clinical outcomes of each approach, at both early and long-term (Figure 1).

18.
J Control Release ; 374: 230-241, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39151829

RESUMO

The combination of therapy-induced immunogenic cell death (ICD) and immune checkpoint blockade can provide a mutually reinforced strategy to reverse the poor immunogenicity and immune escape behavior of tumors. In this work, a chimeric peptide-engineered immunostimulant (ER-PPB) is fabricated for endoplasmic reticulum (ER)-targeted photodynamic immunotherapy against metastatic tumors. Among which, the amphiphilic chimeric peptide (ER-PP) is composed of ER-targeting peptide FFKDEL, hydrophilic PEG8 linker and photosensitizer protoporphyrin IX (PpIX), which could be assembled with a PD-1/PD-L1 blocker (BMS-1) to prepare ER-PPB. After passively targeting at tumor tissues, ER-PPB will selectively accumulate in the ER. Next, the localized PDT of ER-PPB will produce a lot of ROS to destroy the primary tumor cells, while increasing the ER stress to initiate a robust ICD cascade. Moreover, the concomitant delivery of BMS-1 can impede the immune escape of tumor cells through PD-1/PD-L1 blockade, thus synergistically activating the immune system to combat metastatic tumors. In vitro and in vivo results demonstrate the robust immune activation and metastatic tumor inhibition characteristics of ER-PPB, which may offer a promising strategy for spatiotemporally controlled metastatic tumor therapy.


Assuntos
Retículo Endoplasmático , Imunoterapia , Peptídeos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Protoporfirinas , Animais , Fotoquimioterapia/métodos , Imunoterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Peptídeos/química , Peptídeos/administração & dosagem , Protoporfirinas/administração & dosagem , Protoporfirinas/química , Humanos , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/farmacologia , Feminino , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos
19.
Transl Cancer Res ; 13(7): 3262-3272, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39145066

RESUMO

Background: It is difficult for chronic myeloid leukemia (CML) patients with BCR::ABL1 independent drug resistance to achieve optimal efficacy. The aim of this study is to investigate the BCR::ABL1 kinase independent mechanism of tyrosine kinase inhibitor (TKI) resistance in CML patients to develop targeted therapeutic strategy. Methods: Herein, we analyzed the long non-coding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of patients who achieved sustained deep molecular response (DMR) after TKI treatment and patients with non-DMR using RNA-seqencing. Furthermore, the differentially expressed lncRNAs and mRNAs were identified. The expression of chosen lncRNA was validated in an expanded cohort, and bioinformatics analysis was performed to analyze the function of selected mRNA. Results: LncRNA data analysis indicated the diversity lncRNA profiles among healthy individuals, CML patients with non-DMR, and CML patients with DMR. Differential expression analysis and Veen plot of up-regulated lncRNAs in patients with non-DMR (compared with healthy individuals) and down-regulated lncRNAs in patients with DMR (compared to patients with non-DMR) revealed that lncRNA CBR3-AS1 overexpression might be related to BCR::ABL1 independent TKI resistance of CML patients. The expression of CBR3-AS1 was then verified in an expanded cohort, suggesting that, compared with control group, there was no statistical difference of CBR3-AS1 expression in DMR group, whereas, CBR3-AS1 was up-regulated in non-DMR group. Moreover, the mRNA data analysis of RNA-sequencing was performed. We considered genes that up-regulated in non-DMR group (compared with control group), down-regulated in DMR group (compared with non-DMR group), showed no statistical difference between control and DMR group as the potential genes that associated with TKI resistance of CML patients. A total of 55 corresponding mRNAs were obtained including KCNA6, a target gene of CBR3-AS1. Further bioinformatics analysis showed that the major interacted genes of KCNA6 were enriched in several resistance-associated pathways including interleukin -17 signaling pathway and cyclic adenosine monophosphate signaling pathway. Conclusions: In conclusion, this work indicates that CBR3-AS1 might be involved in BCR::ABL1 independent TKI resistance of CML patients through targeting KCNA6, providing a novel target for intervention treatment of CML patients with BCR::ABL1 independent TKI resistance.

20.
Infect Drug Resist ; 17: 3475-3482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139625

RESUMO

Background: Non-tuberculous mycobacteria (NTM) are a group of mycobacteria that are commonly found in the environment and can cause disease in humans. The symptoms of NTM infection can be similar to those of tuberculosis, making diagnosis challenging. The morbidity associated with NTM is increasing, and clinical management can be challenging. Case Description: This report details the case of a 32-year-old male who was found to have multiple enlarged and partially necrotic lymph nodes in the neck, axilla, mediastinum, and retroperitoneum. The causative agent was rapidly identified as Mycobacterium paracondontium through pathogen-targeted sequencing (tNGS). After two weeks of treatment with azithromycin, moxifloxacin, rifabutin, and amikacin, the patient's uncomfortable symptoms had resolved, and he is currently undergoing further review. Conclusion: It is imperative that clinicians remain vigilant for the presence of NTM, particularly those that are rare, given their pervasiveness in the environment. Prompt diagnosis is of paramount importance, and molecular identification techniques represent a crucial tool in this regard. In vitro drug sensitivity testing should be conducted whenever feasible to guarantee the administration of an efficacious treatment regimen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA