Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Phytother Res ; 38(8): 3839-3855, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729776

RESUMO

White adipose tissue accumulation and inflammation contribute to obesity by inducing insulin resistance. Herein, we aimed to screen the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for the treatment of insulin resistance and explore the potential synergistic mechanisms. Enzyme-linked immunosorbent assay and quantitative PCR were used to detect expression levels of inflammatory genes in vitro and in vivo. Western blotting and immunohistochemistry were performed to detect protein levels of the insulin signaling pathway and macrophage markers. The effects on obesity-induced insulin resistance were verified using a diet-induced obesity (DIO) mouse model. Interactions between macrophage and adipocyte were assessed using a cellular supernatant transfer assay. Berberine (BBR) and isoliquiritigenin (ISL) alleviated mRNA levels and secretion of inflammatory genes in vitro and in vivo. Furthermore, BBR acted synergistically with ISL to ameliorate obesity and dyslipidemia in DIO mice. Meanwhile, the combination treatment significantly improved glucose intolerance and insulin resistance and decreased M1-macrophage accumulation and infiltration in the adipose tissue. Mechanistically, co-treatment with BBR and ISL upregulated the protein expression of the IRS1-PI3K-Akt insulin signaling pathway, enhanced glucose uptake in adipocyte, and suppressed the interaction between macrophage and adipocyte. BBR and ISL were identified as the synergistic components of the herbal pair Coptidis Rhizoma-Glycyrrhizae Radix et Rhizoma for treating insulin resistance. The synergistic combination of BBR with ISL can be a promising and effective strategy for improving obesity-induced adipose inflammation and insulin resistance.


Assuntos
Berberina , Chalconas , Inflamação , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Animais , Berberina/farmacologia , Obesidade/tratamento farmacológico , Chalconas/farmacologia , Camundongos , Masculino , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Sinergismo Farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Glycyrrhiza/química , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/farmacologia , Células 3T3-L1 , Células RAW 264.7
2.
Pharmacol Res ; 188: 106627, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36566001

RESUMO

The development and application of traditional drugs represented by small molecule chemical drugs and biological agents, especially inhibitors, have become the mainstream drug development. In recent years, targeted protein degradation (TPD) technology has become one of the most promising methods to remove specific disease-related proteins using cell self-destruction mechanisms. Many different TPD strategies are emerging based on the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP), including but not limited to proteolysis-targeting chimeras (PROTAC), molecular glues (MG), lysosome targeting chimeras (LYTAC), chaperone-mediated autophagy (CMA)-targeting chimeras, autophagy-targeting chimera (AUTAC), autophagosome-tethering compound (ATTEC), and autophagy-targeting chimera (AUTOTAC). The advent of targeted degradation technology can change most protein targets in human cells from undruggable to druggable, greatly expanding the therapeutic prospect of refractory diseases such as metabolic syndrome. Here, we summarize the latest progress of major TPD technologies, especially in metabolic syndrome and look forward to providing new insights for drug discovery.


Assuntos
Síndrome Metabólica , Humanos , Proteólise , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Biol Toxicol ; 39(4): 1215-1235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35802278

RESUMO

Epimedii folium (EF) is an effective herbal medicine in osteoporosis treatment, but the clinical utilization of EF has been limited due to potential hepatotoxicity. The previous studies identified that baohuoside I (BI), the main active component of EF, was relevant to EF-induced liver injury. However, the mechanisms of BI causing direct injury to hepatocytes remain unclear. Here, we reveal that BI inhibits FXR-mediated signaling pathway via targeting estrogen receptor α (ER α), leading to the accumulation of bile acids (BAs). Targeted bile acid analyses show BI alters the BA composition and distribution, resulting in impaired BA homeostasis. Mechanistically, BI induces FXR-dependent hepatotoxicity at transcriptional level. Additionally, ER α is predicted to bind to the FXR promoter region based on transcription factor binding sites databases and we further demonstrate that ER α positively regulates FXR promoter activity and affects the expression of target genes involved in BA metabolism. Importantly, we discover that ER α and its mediated FXR transcription regulation might be involved in BI-induced liver injury via ligand-dependent ER α degradation. Collectively, our findings indicate that FXR is a newly discovered target gene of ER α mediated BI-induced liver injury, and suggest BI may be responsible for EF-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Receptores Citoplasmáticos e Nucleares , Humanos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/farmacologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Homeostase , Transdução de Sinais
4.
Phytother Res ; 37(12): 5821-5836, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655539

RESUMO

The ischemic brain can dialogue with peripheral tissues through the immune system. Ginkgo biloba extract (EGb) was used to regulate various neurological disorders; however, the impact of EGb on ischemic stroke is still unclear. Here, we aimed to investigate whether immunomodulation has participated in the beneficial effects of EGb on ischemia/reperfusion (I/R) brain injury. Mice were orally administered with EGb once daily for 7 days before the induction of I/R. Neurobehavioral scores, infarct volume, and brain inflammation were determined. The proportion of CD4+ T cells was detected by flow cytometry. EGb significantly lowered neurobehavioral scores, infarct volume, and the level of inflammatory cytokines in I/R mice. Interestingly, EGb altered the proportion of CD4+ T cells, particularly increasing the proportion of Treg cells. Depletion of Treg cells weakened the neuroprotective effects of EGb on ischemic stroke; furthermore, EGb decreased the expression of HIF-1α and HK2 and promoted the differentiation of Treg cells in vitro. EGb suppressed the HIF-1α/HK2 signaling pathway to promote the differentiation of Treg cells and ameliorate ischemic stroke in mice. The expansion effect of EGb on Treg cells could be exploited as part of future stroke therapy.


Assuntos
Ginkgo biloba , AVC Isquêmico , Camundongos , Animais , Linfócitos T Reguladores , Extratos Vegetais/farmacologia , Infarto
5.
Biochem Biophys Res Commun ; 622: 184-191, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35932530

RESUMO

Hepatic steatosis is one of the most important causes of liver disease worldwide. Heat shock protein 90 (HSP90) is essential for numerous client proteins. Recently, more attention was focused on increased HSP90 levels in hepatic steatosis, especially HSP90ß. Thus, great efforts have been made to develop HSP90ß inhibitors, and most natural inhibitors are derived from microorganisms. In this study, using microarray chips and surface pasmon resonance (SPR) technology, we screened 189 antibiotics in order to obtain an inhibitor directly binding to the non-N-terminal domain of HSP90ß. Finally, we discovered an antibiotic, 7-aminocephalosporanic acid (7ACA), with a KD value of 6.201 µM between 7ACA and non-N-terminal domain of HSP90ß. Besides, 7ACA was predicted to interact with the middle domain (MD) of HSP90ß. In HepG2 cells, we found that 7ACA reduced cellular total cholesterol (TC) and triglyceride (TG) by decreasing sterol regulatory element-binding proteins (SREBPs). In HFD fed mice, administration of 7ACA (5, 10, and 25 mg kg-1 d-1, ig, for 12 weeks) dose-dependently decreased serum TC and TG and played an important role in protecting liver and adipose tissue from lipid accumulation. In conclusion, our study demonstrated that antibiotic 7ACA, as an HSP90ß middle domain inhibitor, was promising for the development of lipid-lowering drugs.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas , Dieta Hiperlipídica , Lipogênese , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
6.
Pharmacol Res ; 163: 105324, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276100

RESUMO

Based on the role of ATG7 in the initiation of autophagy, autophagy can be divided into ATG7-dependent selective autophagy and ATG7-independent alternative autophagy. However, the detailed roles of two different types of autophagy in antitumor therapy have not been fully elucidated so far. Here, we for the first time demonstrated an investigational inducer, w09, could induce both selective autophagy and alternative autophagy in NSCLC, but the phenotypes of these two kinds of autophagy are different:(1) w09-induced selective autophagy mainly promoted cell apoptosis, while w09-triggered alternative autophagy markedly induced autophagic cell death in NSCLC;(2) w09-induced ATG7 dependent autophagy mainly promoted the accumulation of SQSTM1/p62, while w09-triggered ATG7 independent autophagy markedly accelerated the degradation of SQSTM1/p62. These above results were further confirmed by knockout ATG7 gene in A549 cells or restoration of ATG7 function in H1650 cells. Deletion of ATG7 gene markedly attenuated the effect of w09-induced autophagy or apoptosis on A549 cells, while restoration of functional ATG7 markedly enhanced the effect of w09-induced autophagy and apoptosis on H1650 cells. Mechanistically, we further revealed that w09 induced two different types of autophagy through inhibiting PI3K/AKT/mTOR signaling pathway. Notably, compared with A549WT xenograft model, the in vivo antitumor effect of w09 or Taxel on the ATG7-deficient A549 xenograft model was significantly attenuated. Therefore, a special attention must be paid to distinguish which kinds of autophagy have been induced by autophagy inducers with antitumor agents by targeting PI3K/AKT/mTOR signaling pathway.


Assuntos
Antineoplásicos/uso terapêutico , Proteína 7 Relacionada à Autofagia/genética , Autofagia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Cell Biol Toxicol ; 37(3): 441-460, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33034787

RESUMO

Myopathy is the major adverse effect of statins. However, the underlying mechanism of statin-induced skeletal muscle atrophy, one of statin-induced myopathy, remains to be elucidated. Myostatin is a negative regulator of skeletal muscle mass and functions. Whether myostatin is involved in statin-induced skeletal muscle atrophy remains unknown. In this study, we uncovered that simvastatin administration increased serum myostatin levels in mice. Inhibition of myostatin with follistatin, an antagonist of myostatin, improved simvastatin-induced skeletal muscle atrophy. Simvastatin induced myostatin expression not only in skeletal muscle but also in brown adipose tissue (BAT). Mechanistically, simvastatin inhibited the phosphorylation of forkhead box protein O1 (FOXO1) in C2C12 myotubes, promoting the nuclear translocation of FOXO1 and thereby stimulating the transcription of myostatin. In differentiated brown adipocytes, simvastatin promoted myostatin expression mainly by inhibiting the expression of interferon regulatory factor 4 (IRF4). Moreover, the stimulative effect of simvastatin on myostatin expression was blunted by geranylgeranyl diphosphate (GGPP) supplementation in both myotubes and brown adipocytes, suggesting that GGPP depletion was attributed to simvastatin-induced myostatin expression. Besides, the capacities of statins on stimulating myostatin expression were positively correlated with the lipophilicity of statins. Our findings provide new insights into statin-induced skeletal muscle atrophy. Graphical headlights 1. Simvastatin induces skeletal muscle atrophy via increasing serum myostatin levels in mice; 2. Simvastatin promotes myostatin expression in both skeletal muscle and brown adipose tissue through inhibiting GGPP production; 3. The stimulating effect of statins on myostatin expression is positively correlated with the lipophilicity of statins.


Assuntos
Proteína Forkhead Box O1/genética , Fatores Reguladores de Interferon/genética , Atrofia Muscular/genética , Miostatina/sangue , Sinvastatina/efeitos adversos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/genética , Doenças Musculares/patologia , Miostatina/genética , Fosfatos de Poli-Isoprenil/farmacologia , Sinvastatina/farmacologia
8.
Zhongguo Zhong Yao Za Zhi ; 44(21): 4552-4559, 2019 Nov.
Artigo em Zh | MEDLINE | ID: mdl-31872647

RESUMO

Hyperlipidemia,as one of the severe risk factors of cardiovascular disease,could easily trigger atherosclerosis,coronary heart disease,peripheral vascular disease,pancreatitis,etc.,and could also increase the incidence of type 2 diabetes and fatty liver disease. Improving dyslipidemia could slow down the progression of atherosclerosis and reduce the risk of coronary heart disease. This is of great importance for prevention and treatment of cardiovascular disease. Phytosterols are natural active ingredients in plants. Many researches have shown that phytosterols have significant lipid-lowering activity,which could effectively lower blood cholesterol and triglyceride levels. Foods containing phytosterols have been widely used as therapeutic diets for improving dyslipidemia. In the early years,it was believed that the lipid-lowering effect of phytosterols was achieved by competitively inhibiting the absorption of dietary cholesterol in the intestine since phytosterols had similar chemical structures with cholesterol. In further researches in recent years,more progress has been made in the lipid-lowering mechanisms of phytosterols. In this paper,PubMed and Web of Science were used to review the cholesterol-lowering and triglyceride-lowering mechanisms of phytosterols according to the available data published,so as to use phytosterols more rationally in clinical application to improve hyperlipidemia and other induced diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipolipemiantes/farmacologia , Fitosteróis/farmacologia , Colesterol , Humanos , Triglicerídeos
9.
Biomed Pharmacother ; 165: 114835, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352700

RESUMO

As the first histone acetyltransferase to be cloned and identified in yeast, general control non-depressible 5 (GCN5) plays a crucial role in epigenetic and chromatin modifications. It has been extensively studied for its essential role in regulating and causing various diseases. There is mounting evidence to suggest that GCN5 plays an emerging role in human diseases and its therapeutic potential is promising. In this paper, we begin by providing an introduction GCN5 including its structure, catalytic mechanism, and regulation, followed by a review of the current research progress on the role of GCN5 in regulating various diseases, such as cancer, diabetes, osteoporosis. Thus, we delve into the various aspects of GCN5 inhibitors, including their types, characteristics, means of discovery, activities, and limitations from a medicinal chemistry perspective. Our analysis highlights the importance of identifying and creating inhibitors that are both highly selective and effective inhibitors, for the future development of novel therapeutic agents aimed at treating GCN5-related diseases.


Assuntos
Neoplasias , Proteínas de Saccharomyces cerevisiae , Humanos , Histona Acetiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Cell Metab ; 35(1): 101-117.e11, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36525963

RESUMO

sn-1,2-diacylglycerol (sn-1,2-DAG)-mediated activation of protein kinase Cε (PKCε) is a key pathway that is responsible for obesity-related lipid metabolism disorders, which induces hepatic insulin resistance and type 2 diabetes. No small molecules have been previously reported to ameliorate these diseases through this pathway. Here, we screened and identified the phytochemical atractylenolide II (AT II) that reduces the hepatic sn-1,2-DAG levels, deactivates PKCε activity, and improves obesity-induced hyperlipidemia, hepatosteatosis, and insulin resistance. Furthermore, using the ABPP strategy, the diacylglycerol kinase family member DGKQ was identified as a direct target of AT II. AT II may act on a novel drug-binding pocket in the CRD and PH domains of DGKQ to thereby allosterically regulate its kinase activity. Moreover, AT II also increases weight loss by activating DGKQ-AMPK-PGC1α-UCP-1 signaling in adipose tissue. These findings suggest that AT II is a promising lead compound to improve obesity-induced insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Proteína Quinase C-épsilon/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diglicerídeos/metabolismo , Obesidade/tratamento farmacológico
11.
Cell Death Differ ; 30(3): 673-686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36198833

RESUMO

Heat shock protein 90ß (Hsp90ß, encoded by Hsp90ab1 gene) is the most abundant proteins in the cells and contributes to variety of biological processes including metabolism, cell growth and neural functions. However, genetic evidences showing Hsp90ß in vivo functions using tissue specific knockout mice are still lacking. Here, we showed that Hsp90ß exerted paralogue-specific role in osteoclastogenesis. Using myeloid-specific Hsp90ab1 knockout mice, we provided the first genetic evidence showing the in vivo function of Hsp90ß. Hsp90ß binds to Ikkß and reduces its ubiquitylation and proteasomal degradation, thus leading to activated NF-κB signaling. Meanwhile, Hsp90ß increases cholesterol biosynthesis by activating Srebp2. Both pathways promote osteoclastogenic genes expression. Genetic deletion of Hsp90ab1 in osteoclast or pharmacological inhibition of Hsp90ß alleviates bone loss in ovariectomy-induced mice. Therefore, Hsp90ß is a promising druggable target for the treatment of osteoporosis.


Assuntos
NF-kappa B , Osteogênese , Animais , Feminino , Camundongos , Colesterol/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Ligante RANK/metabolismo , Transdução de Sinais
12.
Metabolism ; 128: 155120, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34995578

RESUMO

Statin use accompanies with increased risk of new onset of type 2 diabetes, however, the underlying mechanisms remain not be fully understood and effective prevention strategies are still lacking. Herein, we find that both pharmacological and genetic inhibition of GGTase II mimic the disruption of simvastatin on hepatic insulin signaling and glucose metabolism in vitro. AAV8-mediated knockdown of liver RABGGTA, the specific subunit of GGTase II, triggers systemic glucose metabolism disorders in vivo. By adopting a small-scale siRNA screening, we identify RAB14 as a regulator of hepatic insulin signaling and glucose metabolism. Geranylgeranylation deficiency of RAB14 inhibits the phosphorylation of AKT (Ser473) and disrupts hepatic insulin signaling and glucose metabolism possibly via impeding mTORC2 complex assembly. Finally, geranylgeranyl pyrophosphate (GGPP) supplementation is sufficient to prevent simvastatin-caused disruption of hepatic insulin signaling and glucose metabolism in vitro. Geranylgeraniol (GGOH), a precursor of GGPP, is able to ameliorate simvastatin-induced systemic glucose metabolism disorders in vivo. In conclusion, our data indicate that statins-targeted mevalonate pathway regulates hepatic insulin signaling and glucose metabolism via geranylgeranylation of RAB14. GGPP/GGOH supplementation might be an effective strategy for the prevention of the diabetic effects of statins.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Fígado/metabolismo , Ácido Mevalônico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas rab de Ligação ao GTP/fisiologia , Animais , Diterpenos/metabolismo , Células Hep G2 , Humanos , Resistência à Insulina , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de Sinais , Sinvastatina/farmacologia , Transferases/antagonistas & inibidores
13.
J Cachexia Sarcopenia Muscle ; 13(6): 2697-2711, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961942

RESUMO

BACKGROUND: Statins are widely prescribed cholesterol-lowering drugs but have been shown to increase the risk of type 2 diabetes mellitus. However, the molecular mechanisms underlying the diabetogenic effect of statins are still not fully understood. METHODS: The effects of geranylgeranyl transferase I and II (GGTase I and II) inhibition on insulin-stimulated glucose uptake and GLUT4 translocation, and the dependence of these effects on insulin signalling were investigated in skeletal muscle cells. The protective effects of geranylgeranyl pyrophosphate (GGPP) and its precursor geranylgeraniol (GGOH) on simvastatin-induced insulin resistance were evaluated in vitro and in vivo. The effect of GGTase II inhibition in skeletal muscle on insulin sensitivity in vivo was confirmed by adeno-associated virus serotype 9 (AAV9)-mediated knockdown of the specific subunit of GGTase II, RABGGTA. The regulatory mechanisms of GGTase I on insulin signalling and GGTase II on insulin-stimulated GLUT4 translocation were investigated by knockdown of RhoA, TAZ, IRS1, geranylgeranylation site mutation of RhoA, RAB8A, and RAB13. RESULTS: Both inhibition of GGTase I and II mimicked simvastatin-induced insulin resistance in skeletal muscle cells. GGPP and GGOH were able to prevent simvastatin-induced skeletal muscle insulin resistance in vitro and in vivo. GGTase I inhibition suppressed the phosphorylation of AKT (Ser473) (-51.3%, P < 0.01), while GGTase II inhibition had no effect on it. AAV9-mediated knockdown of RABGGTA in skeletal muscle impaired glucose disposal without disrupting insulin signalling in vivo (-46.2% for gastrocnemius glucose uptake, P < 0.001; -52.5% for tibialis anterior glucose uptake, P < 0.001; -17.8% for soleus glucose uptake, P < 0.05; -31.4% for extensor digitorum longus glucose uptake, P < 0.01). Inhibition of RhoA, TAZ, IRS1, or geranylgeranylation deficiency of RhoA attenuated the beneficial effect of GGPP on insulin signalling in skeletal muscle cells. Geranylgeranylation deficiency of RAB8A inhibited insulin-stimulated GLUT4 translocation and concomitant glucose uptake in skeletal muscle cells (-42.8% for GLUT4 translocation, P < 0.01; -50.6% for glucose uptake, P < 0.001). CONCLUSIONS: Geranylgeranyl pyrophosphate regulates glucose uptake via GGTase I-mediated insulin signalling-dependent way and GGTase II-mediated insulin signalling-independent way in skeletal muscle. Supplementation of GGPP/GGOH could be a potential therapeutic strategy for statin-induced insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores de Hidroximetilglutaril-CoA Redutases , Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucose , Sinvastatina , Proteínas rab de Ligação ao GTP/farmacologia
14.
Mater Today Bio ; 12: 100157, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34825161

RESUMO

Drug-induced liver injury (DILI) is a challenging clinical problem with respect to both diagnosis and management. As a newly emerging biomarker of liver injury, miR122 shows great potential in early and sensitive in situ detection of DILI. Glycyrrhetinic acid (GA) possesses desirable therapeutic effect on DILI, but its certain dose-dependent side effects after long-term and/or high-dose administration limit its clinical application. In this study, in order to improve the precise diagnosis and effective treatment of DILI, GA loaded all-in-one theranostic nanoplatform was designed by assembling of upconversion nanoparticles and gold nanocages. As a proof of concept, we demonstrated the applicability of this single-wavelength laser-triggered theranostic nanoplatform for the spatiotemporally controllable in situ imaging of DILI and miR122-controlled on-demand drug release in vitro and in vivo. This novel nanoplatform opens a promising avenue for the clinical diagnosis and treatment of DILI.

15.
Autophagy ; 17(7): 1592-1613, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32432943

RESUMO

SCAP (SREBF chaperone) regulates SREBFs (sterol regulatory element binding transcription factors) processing and stability, and, thus, becomes an emerging drug target to treat dyslipidemia and fatty liver disease. However, the current known SCAP inhibitors, such as oxysterols, induce endoplasmic reticulum (ER) stress and NR1H3/LXRα (nuclear receptor subfamily 1 group H member 3)-SREBF1/SREBP-1 c-mediated hepatic steatosis, which severely limited the clinical application of this inhibitor. In this study, we identified a small molecule, lycorine, which binds to SCAP, which suppressed the SREBF pathway without inducing ER stress or activating NR1H3. Mechanistically, lycorine promotes SCAP lysosomal degradation in a macroautophagy/autophagy-independent pathway, a mechanism completely distinct from current SCAP inhibitors. Furthermore, we determined that SQSTM1 captured SCAP after its exit from the ER. The interaction of SCAP and SQSTM1 requires the WD40 domain of SCAP and the TB domain of SQSTM1. Interestingly, lycorine triggers the lysosome translocation of SCAP independent of autophagy. We termed this novel protein degradation pathway as the SQSTM1-mediated autophagy-independent lysosomal degradation (SMAILD) pathway. In vivo, lycorine ameliorates high-fat diet-induced hyperlipidemia, hepatic steatosis, and insulin resistance in mice. Our study demonstrated that the inhibition of SCAP through the SMAILD pathway could be employed as a useful therapeutic strategy for treating metabolic diseases.Abbreviation: 25-OHD: 25-hydroxyvitamin D; 3-MA: 3-methyladenine; ABCG5: ATP binding cassette subfamily G member 5; ABCG8: ATP binding cassette subfamily G member 8; ACACA: acetyl-CoA carboxylase alpha; AEBSF: 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride; AHI: anhydroicaritin; AKT/protein kinase B: AKT serine/threonine kinase; APOE: apolipoprotein E; ATF6: activating transcription factor 6; ATG: autophagy-related; BAT: brown adipose tissue; CD274/PD-L1: CD274 molecule; CETSA: cellular thermal shift assay; CMA: chaperone-mediated autophagy; COPII: cytoplasmic coat protein complex-II; CQ: chloroquine; DDIT3/CHOP: DNA damage inducible transcript 3; DNL: de novo lipogenesis; EE: energy expenditure; EGFR: epithelial growth factor receptor; eMI: endosomal microautophagy; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FADS2: fatty acid desaturase 2; FASN: fatty acid synthase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GPT/ALT: glutamic-pyruvate transaminase; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; HMGCS1: 3-hydroxy-3-methylglutaryl-CoA synthase 1; HSP90B1/GRP94: heat shock protein 90 beta family member 1; HSPA5/GRP78: heat hock protein family A (Hsp70) member 5; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; INSIG1: insulin induced gene 1; LAMP2A: lysosomal associated membrane protein 2A; LDLR: low density lipoprotein receptor; LyTACs: lysosome targeting chimeras; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MBTPS1: membrane bound transcription factor peptidase, site 1; MEF: mouse embryonic fibroblast; MST: microscale thermophoresis; MTOR: mechanistic target of rapamycin kinase; MVK: mevalonate kinase; PROTAC: proteolysis targeting chimera; RQ: respiratory quotient; SCAP: SREBF chaperone; SCD1: stearoyl-coenzemy A desaturase 1; SMAILD: sequestosome 1 mediated autophagy-independent lysosomal degradation; SQSTM1: sequestosome 1; SREBF: sterol regulatory element binding transcription factor; TNFRSF10B/DR5: TNF receptor superfamily member 10b; TRAF6: TNF receptor associated factor 6; UPR: unfolded protein response; WAT: white adipose tissue; XBP1: X-box binding protein 1.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/metabolismo , Resistência à Insulina , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Lisossomos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Obesidade/metabolismo , Fenantridinas/farmacologia , Animais , Regulação para Baixo , Células HEK293 , Células Hep G2 , Humanos , Hiperlipidemias/etiologia , Hiperlipidemias/fisiopatologia , Resistência à Insulina/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lisossomos/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Am J Chin Med ; 48(6): 1353-1368, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33016104

RESUMO

Diabetes mellitus is a chronic endocrine disease result from absolute or relative insulin secretion deficiency, insulin resistance, or both, and has become a major and growing public healthy menace worldwide. Currently, clinical antidiabetic drugs still have some limitations in efficacy and safety such as gastrointestinal side effects, hypoglycemia, or weight gain. Rosmarinus officinalis is an aromatic evergreen shrub used as a food additive and medicine, which has been extensively used to treat hyperglycemia, atherosclerosis, hypertension, and diabetic wounds. A great deal of pharmacological research showed that rosemary extract and its phenolic constituents, especially carnosic acid, rosmarinic acid, and carnosol, could significantly improve diabetes mellitus by regulating glucose metabolism, lipid metabolism, anti-inflammation, and anti-oxidation, exhibiting extremely high research value. Therefore, this review summarizes the pharmacological effects and underlying mechanisms of rosemary extract and its primary phenolic constituents on diabetes and relative complications both in vitro and in vivo studies from 2000 to 2020, to provide some scientific evidence and research ideas for its clinical application.


Assuntos
Abietanos/farmacologia , Abietanos/uso terapêutico , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Depsídeos/farmacologia , Depsídeos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Fenóis/farmacologia , Fenóis/uso terapêutico , Fitoterapia , Extratos Vegetais/química , Rosmarinus/química , Abietanos/isolamento & purificação , Animais , Anti-Inflamatórios , Antioxidantes , Cinamatos/isolamento & purificação , Depsídeos/isolamento & purificação , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fenóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Ácido Rosmarínico
17.
Nanoscale ; 12(28): 15325-15335, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32648877

RESUMO

Drug-induced liver injury (DILI) is increasingly recognized as one of the most challenging global health problems. Conventional in vitro detection methods not only lack specificity and sensitivity but also cannot achieve real-time, straightforward visualization of hepatotoxicity in vivo. Liver-specific miR122 has been observed to be a superior and sensitive biomarker for DILI diagnosis. Herein, a sensitive upconverting nanoprobe synthesized with upconversion nanoparticles (UCNPs) and gold nanorods (GNR) was designed to diagnose hepatotoxicity in vivo. After injection, the nanoprobes accumulated in the liver and were activated by miR122, and the signal amplification technology fully yielded luminescent amplification; hence, the detection sensitivity was improved. Because of the high tissue penetration capability of near-infrared light, this nanoprobe can achieve real-time in situ detection, thereby providing a novel technology for precise biological and medical analysis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Ouro , Humanos , Luminescência , Tecnologia
18.
Future Med Chem ; 12(15): 1399-1414, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32705902

RESUMO

Background: To clarify the molecular mechanism of novel 2-aminonicotinonitrile autophagy enhancers, two series of novel 2-aminonicotinonitrile derivatives are synthesized and their structure-activity relationship and biological activity were analyzed. Results & methodology: Structure-activity relationship analysis revealed that substituents at C-4 and C-6 position of 7a contribute to enhance their autophagy-inducing activity, while C-5 position substituents have the opposite effect. The most promising compound 7g showed the strongest autophagy-inducing activity and better antiproliferative activity by inducing cell apoptosis and blocking cell cycle G1 arrest in SGC-7901 cells. Conclusion: The novel 2-aminonicotinonitrile autophagy enhancers were for the first time discovered and 7g might be a promising new autophagy enhancer with potential anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Descoberta de Drogas , Piridinas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Células Tumorais Cultivadas
19.
Cell Death Differ ; 27(7): 2048-2065, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31907393

RESUMO

Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1ß), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.


Assuntos
Abietanos/farmacologia , Reabsorção Óssea/prevenção & controle , Osteoclastos/metabolismo , Osteogênese , Ovariectomia , Ligante RANK/farmacologia , Receptores de Estrogênio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/etiologia , Reabsorção Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colesterol/metabolismo , Feminino , Humanos , Luciferases/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/sangue , Osteoporose/diagnóstico por imagem , Osteoporose/etiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação/efeitos dos fármacos , Receptor ERRalfa Relacionado ao Estrogênio
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA