Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Opt Express ; 32(2): 1207-1217, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297677

RESUMO

The investigation into the spectral properties and refractive index (RI) sensitivities at low RI region of helical intermedium-period fiber gratings (HIPFGs) with varied periods ranging from 10-48 µm is presented in detail for the first time. The structure of HIPFG is optimized for RI sensing in the RI range of 1.3-1.33 by comparing the optical properties of HIPFGs with different grating periods. The HIPFG with optimized structure is demonstrated to have a high average sensitivity of 302.5 nm/RIU in the RI ranging from 1.3 to 1.33, which is two orders more elevated than the traditional long-period fiber gratings. The improved HIPFG is also experimentally applied to breath monitoring in different states. Normal breath, slow breath, fast breath, and unhealthy breath are distinguished based on breathing rate, intensity, and time of exhalation and inhalation. The fastest response time is determined to be 10 ms. The results demonstrate that the optical fiber's sensitivity in the low RI region can be increased by shortening its period, offering a special strategy for improving detection performance of HIPFGs. By verifying its performance in breathing monitoring, it is proved that the optimized HIPFG sensor has the great potential to expand medical applications.

2.
Opt Express ; 31(11): 18693-18701, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381576

RESUMO

The paper presents a novel fiber-optic vector magnetic field sensor using a Fabry-Perot interferometer, which consists of an optical fiber end face and a graphene/Au membrane suspended on the ceramic ferrule end face. A pair of gold electrodes are fabricated on the ceramic ferrule by femtosecond laser to transmit electrical current to the membrane. Ampere force is generated when an electrical current flows through the membrane in a perpendicular magnetic field. The change in Ampere force causes a shift in the resonance wavelength in the spectrum. In the magnetic field intensity range of 0 ∼ 180 mT and 0 ∼ -180 mT, the as-fabricated sensor exhibits magnetic field sensitivity of 5.71 pm/mT and 8.07 pm/mT. The proposed sensor has great potential application in weak magnetic field measurements due to its compact structure, cost-effectiveness, ease to manufacture, and good sensing performance.

3.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146172

RESUMO

An all-fiber glucose sensor is proposed and demonstrated based on a helical intermediate-period fiber grating (HIPFG) produced by using a hydrogen/oxygen flame heating method. The HIPFG, with a grating length of 1.7 cm and a period of 35 µm, presents four sets of double dips with low insertion losses and strong coupling strengths in the transmission spectrum. The HIPFG possesses an averaged refractive index (RI) sensitivity of 213.6 nm/RIU nm/RIU in the RI range of 1.33-1.36 and a highest RI sensitivity of 472 nm/RIU at RI of 1.395. In addition, the HIPFG is demonstrated with a low-temperature sensitivity of 3.67 pm/°C, which promises a self-temperature compensation in glucose detection. In the glucose-sensing test, the HIPFG sensor manifests a detection sensitivity of 0.026 nm/(mg/mL) and a limit of detection (LOD) of 1 mg/mL. Moreover, the HIPFG sensor exhibits good stability in 2 h, indicating its capacity for long-time detection. The properties of easy fabrication, high flexibility, insensitivity to temperature, and good stability of the proposed HIPFG endow it with a promising potential for long-term and compact biosensors.


Assuntos
Fibras Ópticas , Refratometria , Glucose , Hidrogênio , Oxigênio
4.
Lab Chip ; 23(15): 3518-3526, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37435710

RESUMO

The widespread utilization of hydrogen energy has increased the demand for trace hydrogen detection. In this work, we propose a fiber-optic hydrogen sensor based on a Fabry-Pérot Interferometer (FPI) consisting of a fiber-tip graphene-Au-Pd submicron film cantilever. The palladium (Pd) film on the cantilever surface is used as hydrogen-sensitive material to obtain high sensing sensitivity. Hydrogen sensing is realized by monitoring the resonant frequency shift of the FPI introduced by the interaction between Pd film and hydrogen molecules. The hydrogen sensor is proven for low-hydrogen-concentration detection with hydrogen concentrations in the range of 0-1000 ppm, and experimentally characterized by a highest sensitivity of 30.3 pm ppm-1 in a low hydrogen concentration of 0-100 ppm, which is more than two orders higher than for previously reported FPI-based sensors. In real-time hydrogen monitoring, a rapid reaction time of 31.5 s was achieved. This work provides a compact all-optical solution for the safe detection of low hydrogen concentrations, which is an interesting alternative for trace hydrogen detection in the aerospace industry, energy production, and medical applications.

5.
ACS Appl Mater Interfaces ; 14(25): 29357-29365, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704433

RESUMO

Nanofilm resonators combine ultracompact and highly mechanically sensitive properties, making them intriguing devices for sensing applications. For trace hydrogen detection, we demonstrate an optomechanical nanofilm resonator by employing a Pd- and Au-decorated graphene onto a fiber end facet. The Pd layer is a sensitive layer for selective absorption of hydrogen. Hydrogen sensing is achieved by all-optical measuring of the resonant frequencies shift of the optomechanical nanofilm resonator induced by hydrogen-related mechanical stress change. Using the approach, we realize highly sensitive hydrogen sensing at room temperature with a low detection limit, challenging the state-of-the-art. When the measured hydrogen concentration increases from 0 to 1000 ppm (v/v), the mechanical resonance frequencies of the sensor at 511.7 kHz, 1253.4 kHz, and 2231.7 kHz blue-shift by 100.4 kHz, 257.5 kHz, and 400.6 kHz, respectively. The response and recovery time are 120.3 and 91.3 s at a 1000 ppm hydrogen concentration. Such a sensor exhibits a low detection limit of 741 ppb and good repeatability in the measurement process, which makes the practical application of the sensor possible.

6.
Biosensors (Basel) ; 12(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35200359

RESUMO

An all fiber-optic immunosensor based on elliptical core helical intermediate-period fiber grating (E-HIPFG) is proposed for the specific detection of human immunoglobulin G (human IgG). E-HIPFGs are all-fiber transducers that do not include any additional coating materials or fiber architectures, simplifying the fabrication process and promising the stability of the E-HIPFG biosensor. For human IgG recognition, the surface of an E-HIPFG is functionalized by goat anti-human IgG. The functionalized E-HIPFG is tested by human IgG solutions with a concentration range of 10-100 µg/mL and shows a high sensitivity of 0.018 nm/(µg/mL) and a limit of detection (LOD) of 4.7 µg/mL. Notably, the functionalized E-HIPFG biosensor is found to be insensitive to environmental disturbances, with a temperature sensitivity of 2.6 pm/°C, a strain sensitivity of 1.2 pm/µÎµ, and a torsion sensitivity of -23.566 nm/(rad/mm). The results demonstrate the considerable properties of the immunosensor, with high resistance to environmental perturbations, indicating significant potential for applications in mobile biosensors and compact devices.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Tecnologia de Fibra Óptica/instrumentação , Imunoensaio/instrumentação , Imunoglobulina G/química
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120414, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619511

RESUMO

We investigated the vibrational density of states of sodium carboxymethyl starch (CM-starch) by terahertz (THz) time-domain spectroscopy. The CM-starch showed a broad peak at ∼3 THz. The structure of the peak was similar to those corresponding to glucose-based polymer glasses possessing hydrogen bonds. The boson peak (BP) appeared at 1.16 THz at the lowest temperature and disappeared because of the existence of excess wing at higher temperatures. However, based on our novel BP frequency determination method using the inflection point of the extinction coefficient, the BP frequency showed almost no dependence on temperature. Further, the chain length dependence of the BP frequency of the glucose-based glasses showed that the BP frequency of the polymer glass was slightly lower than that of the monomer glass. The power law behaviour of the absorption coefficient suggested the existence of fractons, and the fractal dimension was estimated to be 2.33.


Assuntos
Espectroscopia Terahertz , Ligação de Hidrogênio , Amido/análogos & derivados , Vibração
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118828, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32882654

RESUMO

Paramylon is a long-chain polysaccharide, composed of glucose units connected via ß-(1,3) glycosidic bonds, that spontaneously forms a three-strand helical bundle. Paramylon-esters can be made by partially or fully replacing saccharide chain hydroxide groups with carboxylic functional groups, such as stearoyl (CH3(CH2)16CO) and palmitoyl (CH3(CH2)24CO). The paramylon-ester with carboxylic acids has superior characteristics, including high thermal resistance, stability and transparency under visible light, which are necessary for thermoplastic applications. In this study, the absorption coefficient α(ν) and absorbance spectra of paramylons and paramylon-esters were measured in the 0.3-8.0 THz range and compared with the corresponding spectra of glucose and cellulose. Paramylon and paramylon-ester molecules were found to exhibit unique, so-called fingerprint, α(ν)peaks at 4.0, 6.0 and 8.0 THz, and 2.5 and 5.0 THz, respectively. We speculate that the spectral features observed are owing to intermolecular interaction modes of the weakly coupled polysaccharide chains. The paramylons with different molecular weights show very similar absorption features in the low-frequency side, both in spectral shapes and intensities, indicating that absorption is independent of molecular size. The paramylon-esters with varying degrees of substitution (DS) are similar spectral shapes but different intensities. A linear correlation between α(ν) peak intensity and the DS of paramylon-esters was established with the R2 value above 0.99. This behavior can be used for the detection and identification of novel paramylon-ester molecules.

9.
Carbohydr Polym ; 232: 115789, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952597

RESUMO

Complex permittivity spectra were obtained herein by performing broadband terahertz (THz) spectroscopy on cellulose, paramylon, and paramylon ester. Absorption peaks observed for cellulose and paramylon at approximately 3 THz are attributed to hydrogen bonds. In addition, a broad absorption peak around 2 THz was observed for all the polymers, demonstrating a general feature of polymer glasses derived from weak interatomic van der Waals forces. The boson peak was observed for cellulose and paramylon ester. The boson peak frequency for cellulose nearly equaled that for glassy glucose-a unit structure of the cellulose polymer. Additionally, the insensitivity of cellulose to the polymerization degree was consistent with recent results obtained via molecular dynamics simulations. In contrast, the boson peak frequency of paramylon ester was markedly smaller than that of cellulose. These results demonstrate the importance of hydrogen bonds as determinants of the boson peak frequency.

10.
J Biomed Opt ; 20(3): 037006, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25757856

RESUMO

Hemagglutinin (HA) is the main surface glycoprotein of the influenza A virus. The H9N2 subtype influenza A virus is recognized as the most possible pandemic strain as it has crossed the species barrier, infecting swine and humans. We use terahertz spectroscopy to study the hydration shell formation around H9 subtype influenza A virus's HA protein (H9 HA) as well as the detection of antigen binding of H9 HA with the broadly neutralizing monoclonal antibody. We observe a remarkable concentration dependent nonlinear response of the H9 HA, which reveals the formation process of the hydration shell around H9 HA molecules. Furthermore, we show that terahertz dielectric properties of the H9 HA are strongly affected by the presence of the monoclonal antibody F10 and that the terahertz dielectric loss tangent can be used to detect the antibody binding at lower concentrations than the standard ELISA test.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia , Espectroscopia Terahertz/métodos , Animais , Anticorpos Monoclonais/análise , Anticorpos Neutralizantes/análise , Anticorpos Antivirais , Reações Antígeno-Anticorpo , Ensaio de Imunoadsorção Enzimática , Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Humanos , Vírus da Influenza A Subtipo H9N2/química , Influenza Humana/virologia , Sensibilidade e Especificidade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA