Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3837-3847, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39099357

RESUMO

The study investigates the therapeutic effects and mechanisms of ginsenoside Rg_1(GRg_1) on sepsis-induced acute lung injury(SALI). A murine model of SALI was created using cecal ligation and puncture(CLP) surgery, and mice were randomly assigned to groups for GRg_1 intervention. Survival and body weight changes were recorded, lung function was assessed with a non-invasive lung function test system, and lung tissue damage was evaluated through HE staining. The content and expression of inflammatory factors were measured by ELISA and qRT-PCR. Apoptosis was examined using flow cytometry and TUNEL staining. The activation and expression of apoptosis-related molecules cysteinyl aspartate specific proteinase 3(caspase-3), B-cell lymphoma-2(Bcl-2), Bcl-2 associated X protein(Bax), and endoplasmic reticulum stress-related molecules protein kinase R-like endoplasmic reticulum kinase(PERK), eukaryotic initiation factor 2α(eIF2α), activating transcription factor 4(ATF4), and C/EBP homologous protein(CHOP) were studied using Western blot and qRT-PCR. In addition, an in vitro model of lipopolysaccharide(LPS)-induced lung alveolar epithelial cell injury was used, with the application of the endoplasmic reticulum stress inducer tunicamycin to validate the action mechanism of GRg_1. RESULTS:: indicated that, when compared to the model group, GRg_1 intervention significantly enhanced the survival time of CLP mice, mitigated body weight loss, and improved impaired lung function indices. The GRg_1-treated mice also displayed reduced lung tissue pathological scores, a reduced lung tissue wet-to-dry weight ratio, and lower protein content in the bronchoalveolar lavage fluid. Serum levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α), as well as the mRNA expressions of these cytokines in lung tissues, were decreased. There was a notable decrease in the proportion of apopto-tic alveolar epithelial cells, and down-regulated expressions of caspase-3, Bax, PERK, eIF2α, ATF4, and CHOP and up-regulated expression of Bcl-2 were observed. In vitro findings showed that the apoptosis-lowering and apoptosis-related protein down-regulating effects of GRg_1 were significantly inhibited with the co-application of tunicamycin. Altogether, GRg_1 reduces apoptosis of alveolar epithelial cells, inhibits inflammation in the lungs, alleviates lung injury, and enhances lung function, possibly through the PERK/eIF2α/ATF4/CHOP pathway.


Assuntos
Fator 4 Ativador da Transcrição , Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Apoptose , Fator de Iniciação 2 em Eucariotos , Ginsenosídeos , Sepse , Fator de Transcrição CHOP , eIF-2 Quinase , Animais , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/genética , Ginsenosídeos/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Camundongos , Apoptose/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Sepse/genética , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Masculino , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Humanos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos Endogâmicos C57BL
2.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(7): 681-686, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39223880

RESUMO

Sepsis is a prevalent critical illness observed in emergency intensive care unit (ICU), characterized by life-threatening organ dysfunction caused by infection-induced inflammatory immune disorders in the body. The suppression of immune function plays a crucial role in the development and progression of sepsis. Traditional Chinese medicine theory of "acute deficiency syndrome" in sepsis shares similarities with the concept of "immunosuppression". According to this theory, ginseng is frequently utilized in clinical treatment of sepsis due to its ability to invigorate vitality and strengthen the body, playing a crucial role in tonifying deficiency and improving the overall health of patients. This paper provides a detailed discussion of the pathophysiological mechanisms of sepsis immune dysfunction and its correlation with "acute deficiency syndrome" in traditional Chinese medicine. It summarizes the current state of modern pharmacological research on ginseng's impact on the body's immune function, discusses relevant research progress and shortcomings regarding ginseng's therapeutic effects on immunosuppression in sepsis, and proposes future research directions.


Assuntos
Panax , Sepse , Humanos , Sepse/tratamento farmacológico , Sepse/imunologia , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/uso terapêutico
3.
Sci Rep ; 14(1): 16071, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992150

RESUMO

Sepsis-induced acute lung injury (SALI) poses a significant threat with high incidence and mortality rates. Ginsenoside Rg1 (GRg1), derived from Ginseng in traditional Chinese medicine, has been found to reduce inflammation and protect lung epithelial cells against tissue damage. However, the specific roles and mechanisms by which GRg1 mitigates SALI have yet to be fully elucidated. In this context, we employed a relevant SALI mouse model, alongside network pharmacology, molecular docking, and molecular dynamics simulation to pinpoint GRg1's action targets, complemented by in vitro assays to explore the underlying mechanisms. Our research shows that GRg1 alleviates CLP-induced SALI, decreasing lung tissue damage and levels of serum proinflammatory factor IL-6, TNF-α, and IL-1ß, also enhancing the survival rate of CLP mice. A total of 116 common targets between GRg1 and ALI, with specific core targets including AKT1, VEGFA, SRC, IGF1, ESR1, STAT3, and ALB. Further in vitro experiments assessed GRg1's intervention effects on MLE-12 cells exposed to LPS, with qRT-PCR analysis and molecular dynamics simulations confirming AKT1 as the key target with the favorable binding activity for GRg1. Western blot results indicated that GRg1 increased the Bcl-2/Bax protein expression ratio to reduce apoptosis and decreased the high expression of cleaved caspase-3 in LPS-induced MLE-12 cells. More results showed significant increases in the phosphorylation of PI3K and AKT1. Flow cytometric analysis using PI and Annexin-V assays further verified that GRg1 decreased the apoptosis rate in LPS-stimulated MLE-12 cells (from 14.85 to 6.54%, p < 0.05). The employment of the AKT1 inhibitor LY294002 confirmed these trends, indicating that AKT1's inhibition negates GRg1's protective effects on LPS-stimulated MLE-12 cells. In conclusion, our research highlights GRg1's potential as an effective adjunct therapy for SALI, primarily by inhibiting apoptosis in alveolar epithelial cells and reducing pro-inflammatory cytokine secretion, thus significantly enhancing the survival rates of CLP mice. These beneficial effects are mediated through targeting AKT1 and activating the PI3K-AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Ginsenosídeos , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Ginsenosídeos/farmacologia , Ginsenosídeos/química , Ginsenosídeos/uso terapêutico , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Linhagem Celular , Lipopolissacarídeos
4.
Aging (Albany NY) ; 15(8): 3035-3051, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37116196

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. Although considerable advances in CRC treatment have been achieved, effective treatment improvement has hit a bottleneck. This study demonstrated that TYRO3 expression was aberrantly increased in CRC tissues with prognosis association. The prediction model of prognosis for CRC patients was constructed based on TYRO3 expression. The model suggested that the TYRO3 level is crucial to the final prediction results. We observed that knockdown TYRO3 expression could inhibit the proliferation and migration ability and reverse the drug resistance by constructing drug-resistant CRC cell lines. In vivo experiments also confirmed this conclusion. Thus, targeting TYRO3 combined with 5-Fu treatment could provide a better therapeutic effect. Additionally, TYRO3 could inhibit the EMT process by down-regulating ENO1, which may be achieved by interfering with energy metabolism in cancer cells. Therefore, the current study provides a theoretical basis for TYRO3 in drug-resistance of CRC cells and highlights a new strategy for CRC-targeted therapy.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Carcinogênese/genética , Resistencia a Medicamentos Antineoplásicos/genética , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Receptores Proteína Tirosina Quinases/metabolismo
5.
Int J Biol Sci ; 19(15): 5004-5019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781523

RESUMO

Background: Dietary fat intake is associated with an increased risk of colitis associated cancer (CAC). A high-fat diet (HFD) leads to systemic low-grade inflammation. The colon is believed to be the first organ suffering from inflammation caused by the infiltration of pro-inflammatory macrophages, and promotes CAC progression. We explored the role of HFD in driving CAC by altering gut microbial butyrate metabolism. Methods: Changes in the gut microbiota caused by HFD were investigated via HFD treatment or fecal microbiota transplantation (FMT). The underlying mechanisms were further explored by analyzing the role of gut microbiota, microbial butyrate metabolism, and NLRP3 inflammasome in colon tissues in a CAC mouse model. Results: HFD accelerated CAC progression in mice, and it could be reversed by broad-spectrum antibiotics (ABX). 16S-rRNA sequencing revealed that HFD inhibited the abundance of butyrate-producing bacteria in the gut. The level of short-chain fatty acids (SCFAs), especially butyrate, in the gut of mice treated with HFD was significantly reduced. In addition, treatment with exogenous butyrate reversed the M1 polarization of proinflammatory macrophages, aggravation of intestinal inflammation, and accelerated tumor growth induced by HFD; the NLRP3/Caspase-1 pathway activated by HFD in the colon was also significantly inhibited. In vitro, macrophages were treated with lipopolysaccharide combined with butyrate to detect the M1 polarization level and NLRP3/Caspase-1 pathway expression, and the results were consistent with those of the in vivo experiments. Conclusion: HFD drives colitis-associated tumorigenesis by inducing gut microbial dysbiosis and inhibiting butyrate metabolism to skew macrophage polarization. Exogenous butyrate is a feasible new treatment strategy for CAC, and has good prospect for clinical application.


Assuntos
Colite , Microbioma Gastrointestinal , Camundongos , Animais , Butiratos/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Transformação Celular Neoplásica , Carcinogênese , Caspases
6.
Front Oncol ; 12: 1013035, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620599

RESUMO

Introduction: Chemoresistance is a major barrier in the treatment of colorectal cancer (CRC) and many other cancers. ENO1 has been associated with various biological characteristics of CRC. This study aimed to investigate the function of ENO1 in regulating 5-Fluorouracil (5-FU) resistance in CRC. Methods: ENO1 level in 120 pairs of tumor tissues and adjacent normal tissues was examined by immunohistochemistry, and the correlation between ENO1 expression and prognosis was explored by survival analysis. Its role and potential mechanisms in regulating 5-FU resistance in CRC were studied by Western blotting, MTT assay, colony formation assay and transwell invasion assay. Murine xenograft assay was implied to verify the results in vivo. Results: Our study indicated that ENO1 was elevated in CRC tissues and was associated with poor patient prognosis. High levels of ENO1 expression were detected as a significant influencing factor for overall survival. Furthermore, ENO1 expression was found to have increased in drug-resistant cells (HCT116/5-FU and SW620/5-FU) constructed by increasing concentrations of 5-FU. Knockdown of ENO1 markedly increased the drug susceptibility and inhibited the proliferation and migration ability of HCT116/5-FU and SW620/5-FU cells. It was found that down-regulation of ENO1 inhibited the epithelial-mesenchymal transformation (EMT) signaling process. Finally, a murine xenograft assay verified that the depletion of ENO1 alleviated 5-FU resistance. Conclusion: This study identified that ENO1 regulated 5-FU resistance via the EMT pathway and may be a novel target in the prevention and treatment of 5-FUresistant CRC.

7.
EBioMedicine ; 86: 104347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371983

RESUMO

BACKGROUND: Different methods for digestive tract reconstruction have a complex impact on the nutritional status of gastric cancer (GC) patients after radical gastrectomy. Previous studies reported that Roux-en-Y (R-Y) reconstruction resulted in obvious weight reduction and improvement in type 2 diabetes in obese patients. We investigated the relationship between R-Y reconstruction, gut microbiota, and the NLRP3 inflammasome in GC patients with poor basic nutrition. METHODS: Changes in the gut microbiota after radical gastrectomy accomplished by different methods of digestive tract reconstruction were investigated via fecal microbiota transplantation. The underlying mechanisms were also explored by analyzing the role of the microbiota, butyrate, and the NLRP3 inflammasome in the colon tissues of colitis model mice and GC patients after radical gastrectomy. FINDINGS: R-Y reconstruction effectively relieved intestinal inflammation and facilitated nutrient absorption. 16S rRNA analysis revealed that gavage transplantation with the fecal microbiota of R-Y reconstruction patients could reverse dysbacteriosis triggered by radical gastrectomy and elevate the relative abundance of some short-chain fatty acid (SCFA)-producing bacteria. Subsequently, butyrate negatively regulated the NLRP3-mediated inflammatory signaling pathway to inhibit the activation of macrophages and the secretion of pro-inflammatory mediators such as caspase-1 and interleukin (IL)-1ß, decreasing the level of intestinal inflammation and promoting nutrient absorption. INTERPRETATION: R-Y reconstruction induced colonization with SCFA-producing bacteria to alleviate radical gastrectomy-induced colitis by down-regulating the NLRP3 signaling pathway. This can be a new strategy and theoretical basis for the management of the postoperative nutritional status of GC patients. FUNDING: This work was supported by the National Nature Science Foundation of China (81974375), the BoXi cultivation program (BXQN202130), and the Project of Youth Foundation in Science and Education of the Department of Public Health of Suzhou (KJXW2018001).


Assuntos
Anastomose em-Y de Roux , Colite , Gastrectomia , Animais , Camundongos , Butiratos/metabolismo , Colite/etiologia , Colite/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Regulação para Baixo , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Ribossômico 16S , Transdução de Sinais , Neoplasias Gástricas/cirurgia , Resultado do Tratamento , Anastomose em-Y de Roux/métodos , Anastomose em-Y de Roux/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA