Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant Cell ; 36(10): 4388-4403, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38917216

RESUMO

Plants generally enhance their root growth in the form of greater biomass and/or root length to boost nutrient uptake in response to short-term low nitrogen (LN). However, the underlying mechanisms of short-term LN-mediated root growth remain largely elusive. Our genome-wide association study, haplotype analysis, and phenotyping of transgenic plants showed that the crucial nitrate signaling component NIN-LIKE PROTEIN3.2 (ZmNLP3.2), a positive regulator of root biomass, is associated with natural variations in root biomass of maize (Zea mays L.) seedlings under LN. The monocot-specific gene AUXIN/INDOLE-3-ACETIC ACID14 (ZmAux/IAA14) exhibited opposite expression patterns to ZmNLP3.2 in ZmNLP3.2 knockout and overexpression lines, suggesting that ZmNLP3.2 hampers ZmAux/IAA14 transcription. Importantly, ZmAux/IAA14 knockout seedlings showed a greater root dry weight (RDW), whereas ZmAux/IAA14 overexpression reduced RDW under LN compared with wild-type plants, indicating that ZmAux/IAA14 negatively regulates the RDW of LN-grown seedlings. Moreover, in vitro and vivo assays indicated that AUXIN RESPONSE FACTOR19 (ZmARF19) binds to and transcriptionally activates ZmAux/IAA14, which was weakened by the ZmNLP3.2-ZmARF19 interaction. The zmnlp3.2 ZmAux/IAA14-OE seedlings exhibited further reduced RDW compared with ZmAux/IAA14 overexpression lines when subjected to LN treatment, corroborating the ZmNLP3.2-ZmAux/IAA14 interaction. Thus, our study reveals a ZmNLP3.2-ZmARF19-ZmAux/IAA14 module regulating root biomass in response to nitrogen limitation in maize.


Assuntos
Biomassa , Regulação da Expressão Gênica de Plantas , Nitrogênio , Proteínas de Plantas , Raízes de Plantas , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Nitrogênio/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ácidos Indolacéticos/metabolismo , Estudo de Associação Genômica Ampla
2.
Plant Cell ; 36(10): 4607-4621, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39133577

RESUMO

Complete disruption of critical genes is generally accompanied by severe growth and developmental defects, which dramatically hinder its utilization in crop breeding. Identifying subtle changes, such as single-nucleotide polymorphisms (SNPs), in critical genes that specifically modulate a favorable trait is a prerequisite to fulfill breeding potential. Here, we found 2 SNPs in the E-class floral organ identity gene cucumber (Cucumis sativus) SEPALLATA2 (CsSEP2) that specifically regulate fruit length. Haplotype (HAP) 1 (8G2667A) and HAP2 (8G2667T) exist in natural populations, whereas HAP3 (8A2667T) is induced by ethyl methanesulfonate mutagenesis. Phenotypic characterization of 4 near-isogenic lines and a mutant line showed that HAP2 fruits are significantly longer than those of HAP1, and those of HAP3 are 37.8% longer than HAP2 fruit. The increasing fruit length in HAP1-3 was caused by a decreasing inhibitory effect on CRABS CLAW (CsCRC) transcription (a reported positive regulator of fruit length), resulting in enhanced cell expansion. Moreover, a 7638G/A-SNP in melon (Cucumis melo) CmSEP2 modulates fruit length in a natural melon population via the conserved SEP2-CRC module. Our findings provide a strategy for utilizing essential regulators with pleiotropic effects during crop breeding.


Assuntos
Cucumis sativus , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucumis sativus/genética , Cucumis sativus/crescimento & desenvolvimento , Haplótipos/genética , Fenótipo
3.
Plant Cell ; 34(11): 4232-4254, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36047828

RESUMO

Maternal-to-filial nutrition transfer is central to grain development and yield. nitrate transporter 1/peptide transporter (NRT1-PTR)-type transporters typically transport nitrate, peptides, and ions. Here, we report the identification of a maize (Zea mays) NRT1-PTR-type transporter that transports sucrose and glucose. The activity of this sugar transporter, named Sucrose and Glucose Carrier 1 (SUGCAR1), was systematically verified by tracer-labeled sugar uptake and serial electrophysiological studies including two-electrode voltage-clamp, non-invasive microelectrode ion flux estimation assays in Xenopus laevis oocytes and patch clamping in HEK293T cells. ZmSUGCAR1 is specifically expressed in the basal endosperm transfer layer and loss-of-function mutation of ZmSUGCAR1 caused significantly decreased sucrose and glucose contents and subsequent shrinkage of maize kernels. Notably, the ZmSUGCAR1 orthologs SbSUGCAR1 (from Sorghum bicolor) and TaSUGCAR1 (from Triticum aestivum) displayed similar sugar transport activities in oocytes, supporting the functional conservation of SUGCAR1 in closely related cereal species. Thus, the discovery of ZmSUGCAR1 uncovers a type of sugar transporter essential for grain development and opens potential avenues for genetic improvement of seed-filling and yield in maize and other grain crops.


Assuntos
Grão Comestível , Glucose , Transportadores de Nitrato , Transportador 1 de Peptídeos , Proteínas de Plantas , Sacarose , Zea mays , Humanos , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Glucose/metabolismo , Células HEK293 , Transportadores de Nitrato/genética , Transportadores de Nitrato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Transportador 1 de Peptídeos/genética , Transportador 1 de Peptídeos/metabolismo , Transporte Biológico
4.
Plant Cell Rep ; 43(8): 195, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008098

RESUMO

KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Magnésio , Proteínas de Plantas , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnésio/metabolismo , Magnésio/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amido/metabolismo , Perfilação da Expressão Gênica , Brotos de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas
5.
PLoS Biol ; 18(3): e3000671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203514

RESUMO

Domesticated crops with high yield and quality are frequently susceptible to pathogen attack, whereas enhancement of disease resistance generally compromises crop yield. The underlying mechanisms of how plant development and disease resistance are coordinately programed remain elusive. Here, we showed that the basic Helix-Loop-Helix (bHLH) transcription factor Cucumis sativus Irregular Vasculature Patterning (CsIVP) was highly expressed in cucumber vascular tissues. Knockdown of CsIVP caused severe vasculature disorganization and abnormal organ morphogenesis. CsIVP directly binds to vascular-related regulators YABBY5 (CsYAB5), BREVIPEDICELLUS (CsBP), and AUXIN/INDOLEACETIC ACIDS4 (CsAUX4) and promotes their expression. Knockdown of CsYAB5 resulted in similar phenotypes as CsIVP-RNA interference (RNAi) plants, including disturbed vascular configuration and abnormal organ morphology. Meanwhile, CsIVP-RNAi plants were more resistant to downy mildew and accumulated more salicylic acid (SA). CsIVP physically interacts with NIM1-INTERACTING1 (CsNIMIN1), a negative regulator in the SA signaling pathway. Thus, CsIVP is a novel vasculature regulator functioning in CsYAB5-mediated organ morphogenesis and SA-mediated downy mildew resistance in cucumber.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/imunologia , Proteínas de Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cucumis sativus/classificação , Cucumis sativus/genética , Resistência à Doença/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Morfogênese , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ligação Proteica , Ácido Salicílico/metabolismo , Transdução de Sinais/genética
6.
Plant Cell Physiol ; 63(5): 605-617, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35137209

RESUMO

Crop plants experience various abiotic stresses that reduce yield and quality. Although several adaptative physiological and defense responses to single stress have been identified, the behavior and mechanisms of plant response to multiple stresses remain underexamined. Herein, we determined that the leaf and vascular changes in Cucumis sativus Irregular Vasculature Patterning (CsIVP)-RNAi cucumber plants can enhance resistance to nitrogen deficiency and high-temperature stress. CsIVP negatively regulated high nitrate affinity transporters (NRT2.1, NRT2.5) and reallocation transporters (NRT1.7, NRT1.9, NRT1.12) under low nitrogen stress. Furthermore, CsIVP-RNAi plants have high survival rate with low heat injury level under high-temperature condition. Several key high-temperature regulators, including Hsfs, Hsps, DREB2C, MBF1b and WRKY33 have significant expression in CsIVP-RNAi plants. CsIVP negatively mediated high-temperature responses by physically interacting with CsDREB2C. Altogether, these results indicated that CsIVP integrates innate programming of plant development, nutrient transport and high-temperature resistance, providing a potentially valuable target for breeding nutrient-efficient and heat-resistant crops.


Assuntos
Cucumis sativus , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Nitrogênio/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
7.
Plant Cell ; 31(6): 1289-1307, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30979795

RESUMO

Fruit length is a prominent agricultural trait during cucumber (Cucumis sativus) domestication and diversifying selection; however, the regulatory mechanisms of fruit elongation remain elusive. We identified two alleles of the FRUITFULL (FUL)-like MADS-box gene CsFUL1 with 3393C/A Single Nucleotide Polymorphism variation among 150 cucumber lines. Whereas CsFUL1A was specifically enriched in the long-fruited East Asian type cucumbers (China and Japan), the CsFUL1C allele was randomly distributed in cucumber populations, including wild and semiwild cucumbers. CsFUL1A knockdown led to further fruit elongation in cucumber, whereas elevated expression of CsFUL1A resulted in significantly shorter fruits. No effect on fruit elongation was detected when CsFUL1C expression was modulated, suggesting that CsFUL1A is a gain-of-function allele in long-fruited cucumber that acts as a repressor during diversifying selection of East Asian cucumbers. Furthermore, CsFUL1A binds to the CArG-box in the promoter region of SUPERMAN, a regulator of cell division and expansion, to repress its expression. Additionally, CsFUL1A inhibits the expression of auxin transporters PIN-FORMED1 (PIN1) and PIN7, resulting in decreases in auxin accumulation in fruits. Together, our work identifies an agriculturally important allele and suggests a strategy for manipulating fruit length in cucumber breeding that involves modulation of CsFUL1A expression.


Assuntos
Cucumis sativus/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Alelos , Frutas/genética , Proteínas de Plantas/genética
8.
Plant Physiol ; 184(1): 374-392, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32586893

RESUMO

Carotenoid cleavage dioxygenases (CCDs) drive carotenoid catabolism to produce various apocarotenoids and immediate derivatives with particular developmental, ecological, and agricultural importance. How CCD genes evolved with species diversification and the resulting functional novelties in cereal crops have remained largely elusive. We constructed a unified four-clade phylogenetic tree of CCDs, revealing a previously unanchored basal clade CCD10 CCD10 underwent highly dynamic duplication or loss events, even in the grass family. Different from cleavage sites of CCD8 and ZAXINONE SYNTHASE (ZAS), maize (Zea mays) ZmCCD10a cleaved differentially structured carotenoids at 5, 6 (5', 6') and 9, 10 (9', 10') positions, generating C8 (6-methyl-5-hepten-2-one) and C13 (geranylacetone, α-ionone, and ß-ionone) apocarotenoids in Escherichia coli Localized in plastids, ZmCCD10a cleaved neoxanthin, violaxanthin, antheraxathin, lutein, zeaxanthin, and ß-carotene in planta, corroborating functional divergence of ZmCCD10a and ZAS. ZmCCD10a expression was dramatically stimulated in maize and teosinte (Z. mays ssp. parviglumis, Z. mays ssp. huehuetenangensis, Zea luxurians, and Zea diploperennis) roots by phosphate (Pi) limitation. ZmCCD10a silencing favored phosphorus retention in the root and reduced phosphorus and biomass accumulation in the shoot under low Pi. Overexpression of ZmCCD10a in Arabidopsis (Arabidopsis thaliana) enhanced plant tolerance to Pi limitation by preferential phosphorus allocation to the shoot. Thus, ZmCCD10a encodes a unique CCD facilitating plant tolerance to Pi limitation. Additionally, ZmCCD10a silencing and overexpression led to coherent alterations in expression of PHOSPHATE STARVATION RESPONSE REGULATOR 1 (PHR1) and Pi transporters, and cis-regulation of ZmCCD10a expression by ZmPHR1;1 and ZmPHR1;2 implies a probable ZmCCD10a-involved regulatory pathway that adjusts Pi allocation.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Norisoprenoides/metabolismo , Terpenos/metabolismo , Xantofilas/metabolismo , Zea mays/metabolismo , beta Caroteno/metabolismo
9.
J Exp Bot ; 72(10): 3846-3863, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33765129

RESUMO

Phosphorus and nitrogen nutrition have profound and complicated innate connections; however, underlying molecular mechanisms are mostly elusive. PHR1 is a master phosphate signaling component, and whether it directly functions in phosphorus-nitrogen crosstalk remains a particularly interesting question. In maize, nitrogen limitation caused tip kernel abortion and ear shortening. By contrast, moderately low phosphate in the field reduced kernels across the ear, maintained ear elongation and significantly lowered concentrations of total free amino acids and soluble proteins 2 weeks after silking. Transcriptome profiling revealed significant enrichment and overall down-regulation of transport genes in ears under low phosphate. Importantly, 313 out of 847 differentially expressed genes harbored PHR1 binding sequences (P1BS) including those controlling amino acid/polyamine transport and metabolism. Specifically, both ZmAAP2 and ZmLHT1 are plasma membrane-localized broad-spectrum amino acid transporters, and ZmPHR1.1 and ZmPHR1.2 were able to bind to P1BS-containing ZmAAP2 and ZmLHT1 and down-regulate their expression in planta. Taken together, the results suggest that prevalence of P1BS elements enables ZmPHR1s to regulate a large number of low phosphate responsive genes. Further, consistent with reduced accumulation of free amino acids, ZmPHR1s down-regulate ZmAAP2 and ZmLHT1 expression as direct linkers of phosphorus and nitrogen nutrition independent of NIGT1 in maize ear under low phosphate.


Assuntos
Fatores de Transcrição , Zea mays , Sistemas de Transporte de Aminoácidos , Regulação da Expressão Gênica de Plantas , Fosfatos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
10.
Biochem Biophys Res Commun ; 511(4): 753-758, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30833079

RESUMO

Long non-coding RNAs (lncRNAs) have gained extensive attentions due to their significant roles in diverse biological process. However, the potential functions of lncRNAs participation in adipocyte differentiation have not been fully explored. Here we identified a long non-coding RNA called lnc-OAD (lncRNA associated with osteoblast and adipocyte differentiation, transcribed from 1700018A04Rik gene), which modulated 3T3-L1 adipocyte differentiation. Lnc-OAD was up-regulated expression during 3T3-L1 differentiation and stable knockdown of lnc-OAD inhibited adipocyte differentiation in 3T3-L1 cells. Further mechanisms study revealed that silencing of lnc-OAD strongly elevated the protein expression of ß-catenin, and then decreased expression of adipocyte master transcription factors PPAR-γ and C/EBPα. The addition of IWR-1 up-regulated the expression of PPAR-γ and C/EBPα and rescued the impairment of adipocyte differentiation caused by lnc-OAD knockdown. Meanwhile, we also found mitotic clonal expansion (MCE) during the early stage of adipocyte differentiation was inhibited in lnc-OAD-knockdown cells. Taken together, our study reveals a novel function of lnc-OAD in modulating adipogenesis via influencing mitotic clonal expansion and regulating WNT/ß-catenin signaling pathway.


Assuntos
Adipócitos/citologia , Adipogenia , RNA Longo não Codificante/genética , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Regulação da Expressão Gênica , Camundongos , PPAR gama/genética , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA