Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(41): E8618-E8627, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973866

RESUMO

Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.


Assuntos
Diferenciação Celular , Fenômenos Fisiológicos Celulares , Tamanho Celular , Células-Tronco Mesenquimais/fisiologia , Água/metabolismo , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos BALB C
2.
Proc Natl Acad Sci U S A ; 111(38): 13876-81, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201985

RESUMO

Increased flow resistance is responsible for the elevated intraocular pressure characteristic of glaucoma, but the cause of this resistance increase is not known. We tested the hypothesis that altered biomechanical behavior of Schlemm's canal (SC) cells contributes to this dysfunction. We used atomic force microscopy, optical magnetic twisting cytometry, and a unique cell perfusion apparatus to examine cultured endothelial cells isolated from the inner wall of SC of healthy and glaucomatous human eyes. Here we establish the existence of a reduced tendency for pore formation in the glaucomatous SC cell--likely accounting for increased outflow resistance--that positively correlates with elevated subcortical cell stiffness, along with an enhanced sensitivity to the mechanical microenvironment including altered expression of several key genes, particularly connective tissue growth factor. Rather than being seen as a simple mechanical barrier to filtration, the endothelium of SC is seen instead as a dynamic material whose response to mechanical strain leads to pore formation and thereby modulates the resistance to aqueous humor outflow. In the glaucomatous eye, this process becomes impaired. Together, these observations support the idea of SC cell stiffness--and its biomechanical effects on pore formation--as a therapeutic target in glaucoma.


Assuntos
Citoesqueleto , Células Endoteliais , Olho , Glaucoma , Microscopia de Força Atômica , Células Cultivadas , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Olho/metabolismo , Olho/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Humanos
3.
Biophys J ; 107(6): 1273-9, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229135

RESUMO

Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Fenômenos Mecânicos , Bexiga Urinária/citologia , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Camundongos , Protaminas/farmacologia , Bexiga Urinária/efeitos dos fármacos
4.
Am J Physiol Heart Circ Physiol ; 306(4): H505-16, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24337458

RESUMO

Vascular smooth muscle cells (VSMCs) are thought to assume a quiescent and homogeneous mechanical behavior after arterial tree development phase. However, VSMCs are known to be molecularly heterogeneous in other aspects and their mechanics may play a role in pathological situations. Our aim was to evaluate VSMCs from different arterial beds in terms of mechanics and proteomics, as well as investigate factors that may influence this phenotype. VSMCs obtained from seven arteries were studied using optical magnetic twisting cytometry (both in static state and after stretching) and shotgun proteomics. VSMC mechanical data were correlated with anatomical parameters and ultrastructural images of their vessels of origin. Femoral, renal, abdominal aorta, carotid, mammary, and thoracic aorta exhibited descending order of stiffness (G, P < 0.001). VSMC mechanical data correlated with the vessel percentage of elastin and amount of surrounding extracellular matrix (ECM), which decreased with the distance from the heart. After 48 h of stretching simulating regional blood flow of elastic arteries, VSMCs exhibited a reduction in basal rigidity. VSMCs from the thoracic aorta expressed a significantly higher amount of proteins related to cytoskeleton structure and organization vs. VSMCs from the femoral artery. VSMCs are heterogeneous in terms of mechanical properties and expression/organization of cytoskeleton proteins along the arterial tree. The mechanical phenotype correlates with the composition of ECM and can be modulated by cyclic stretching imposed on VSMCs by blood flow circumferential stress.


Assuntos
Artérias/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Animais , Artérias/metabolismo , Ciclo Celular/fisiologia , Colágeno/metabolismo , Elastina/metabolismo , Feminino , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteômica , Sus scrofa
5.
Nat Mater ; 12(9): 856-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793160

RESUMO

As a wound heals, or a body plan forms, or a tumour invades, observed cellular motions within the advancing cell swarm are thought to stem from yet to be observed physical stresses that act in some direct and causal mechanical fashion. Here we show that such a relationship between motion and stress is far from direct. Using monolayer stress microscopy, we probed migration velocities, cellular tractions and intercellular stresses in an epithelial cell sheet advancing towards an island on which cells cannot adhere. We found that cells located near the island exert tractions that pull systematically towards this island regardless of whether the cells approach the island, migrate tangentially along its edge, or paradoxically, recede from it. This unanticipated cell-patterning motif, which we call kenotaxis, represents the robust and systematic mechanical drive of the cellular collective to fill unfilled space.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/fisiologia , Animais , Movimento Celular , Células Cultivadas , Microscopia de Fluorescência , Modelos Biológicos , Ratos , Estresse Mecânico , Estresse Fisiológico
6.
Nat Mater ; 10(6): 469-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21602808

RESUMO

Cells comprising a tissue migrate as part of a collective. How collective processes are coordinated over large multi-cellular assemblies has remained unclear, however, because mechanical stresses exerted at cell-cell junctions have not been accessible experimentally. We report here maps of these stresses within and between cells comprising a monolayer. Within the cell sheet there arise unanticipated fluctuations of mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer. Within that stress landscape, local cellular migrations follow local orientations of maximal principal stress. Migrations of both endothelial and epithelial monolayers conform to this behaviour, as do breast cancer cell lines before but not after the epithelial-mesenchymal transition. Collective migration in these diverse systems is seen to be governed by a simple but unifying physiological principle: neighbouring cells join forces to transmit appreciable normal stress across the cell-cell junction, but migrate along orientations of minimal intercellular shear stress.


Assuntos
Movimento Celular/fisiologia , Animais , Células Cultivadas , Endotélio Vascular/metabolismo , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Ratos , Estresse Mecânico
7.
Soft Matter ; 8(8): 2438-2443, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23646063

RESUMO

Therapeutic ultrasound is widely employed in clinical applications but its mechanism of action remains unclear. Here we report prompt fluidization of a cell and dramatic acceleration of its remodeling dynamics when exposed to low intensity ultrasound. These physical changes are caused by very small strains (10-5) at ultrasonic frequencies (106 Hz), but are closely analogous to those caused by relatively large strains (10-1) at physiological frequencies (100 Hz). Moreover, these changes are reminiscent of rejuvenation and aging phenomena that are well-established in certain soft inert materials. As such, we suggest cytoskeletal fluidization together with resulting acceleration of cytoskeletal remodeling events as a mechanism contributing to the salutary effects of low intensity therapeutic ultrasound.

8.
J Ocul Pharmacol Ther ; 36(5): 269-281, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32176566

RESUMO

Purpose: To identify new targets and compounds involved in mediating cellular contractility or relaxation in trabecular meshwork (TM) cells and test their efficacy in an ex vivo model measuring outflow facility. Methods: A low-molecular weight compound library composed of 3,957 compounds was screened for cytoskeletal changes using the Acea xCelligence impedance platform in immortalized human NTM5 TM cells. Hits were confirmed by 8-point concentration response and were subsequently evaluated for impedance changes in 2 primary human TM strains, as well as cross-reactivity in bovine primary cells. A recently described bovine whole eye perfusion system was used to evaluate effects of compounds on aqueous outflow facility. Results: The primary screen conducted was robust, with Z' values >0.5. Fifty-two compounds were identified in the primary screen and confirmed to have concentration-dependent effects on impedance in NTM5 cells. Of these, 9 compounds representing distinct drug classes were confirmed to modulate impedance in both human primary TM cells and bovine cells. One of these compounds, wortmannin, an inhibitor of phosphoinositide 3-kinase, increased outflow facility by 11%. Conclusions: A robust phenotypic assay was developed that enabled identification of contractility modulators in immortalized TM cells. The screening hits were translatable to primary TM cells and modulated outflow facility in an ex vivo perfusion assay.


Assuntos
Impedância Elétrica/efeitos adversos , Glaucoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Pressão Intraocular/efeitos dos fármacos , Malha Trabecular/efeitos dos fármacos , Wortmanina/farmacologia , Idoso de 80 Anos ou mais , Animais , Bovinos , Citoesqueleto/efeitos dos fármacos , Glaucoma/fisiopatologia , Humanos , Pressão Intraocular/fisiologia , Contração Muscular/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Malha Trabecular/fisiologia , Wortmanina/administração & dosagem
10.
ACS Biomater Sci Eng ; 3(11): 2815-2824, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33418705

RESUMO

The underlying mechanisms by which extracellular matrix (ECM) mechanics influences cell and tissue function remain to be elucidated because the events associated with this process span size scales from tissue to molecular level. Furthermore, ECM has an extremely complex hierarchical 3D structure and the load distribution is highly dependent on the architecture and mechanical properties of ECM. In the present study, the macro- and microscale mechanical properties of collagen gel were studied. Dynamic rheological testing was performed to study the macroscale mechanical properties of collagen gel. The microscale mechanical properties of collagen gel were measured using optical magnetic twisting cytometry (OMTC). Ferromagnetic beads embedded in the matrix were used as mechanical probes. Our study on the multiscale mechanical properties of collage matrix suggests several interesting differences between macro and microscale mechanical properties originated from the scales of measurements. At the macroscopic scale, storage and loss modulus increase with collagen concentrations. Nonaffine collagen fibril structural network deformation plays an important role in determining the macroscopic mechanical properties of the collagen matrix. At the microscopic scale, however, the local mechanical properties are less sensitive to changes in collagen concentration because of the more immediate/direct deformation of collagen fibrils in the OMTC measurements through forces exerted by locally attached ferromagnetic beads. The loss modulus is more affected by the local interstitial fluid environment, leading to a rather dramatic increase in viscosity with frequency, especially at higher frequencies (>10 Hz). A finite element model was developed to study the geometric factors in the OMTC measurements when the collagen matrix was considered to be hyperelastic. Our results show that the geometric factors are dependent on collagen concentration, or the stiffness of matrix, when nonlinear material properties of the matrix are considered, and thus interpretation of the apparent modulus from OMTC measurements should be conducted carefully.

11.
Invest Ophthalmol Vis Sci ; 58(7): 2991-3003, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605810

RESUMO

Purpose: To discover novel therapies that lower IOP by increasing aqueous humor outflow facility, ex vivo ocular perfusion systems provide a valuable tool. However, currently available designs are limited by their throughput. Here we report the development of a compact, scalable perfusion system with improved throughput and its validation using bovine and porcine eyes. Methods: At a fixed IOP of 6 mm Hg, flow rate was measured by flow sensors. We validated the system by measuring the outflow responses to Y-39983 (a Rho kinase inhibitor), endothelin-1 (ET-1), ambrisentan (an antagonist for endothelin receptor A [ETA]), sphigosine-1-phosphate (S1P), JTE-013 (antagonist for S1P receptor 2 [S1P2]), S-nitroso-N-acetylpenicillamine (SNAP, a nitric oxide [NO] donor), and 3-Morpholino-sydnonimine (SIN-1, another NO donor). Results: The instrument design enabled simultaneous measurements of 20 eyes with a footprint of 1 m2. Relative to vehicle control, Y-39983 increased outflow by up to 31% in calf eyes. On the contrary, ET-1 decreased outflow by up to 79%, a response that could be blocked by pretreatment with ambrisentan, indicating a role for ETA receptors. Interestingly, the effect of ET-1 was also inhibited by up to 70% to 80% by pretreatment with NO donors, SNAP and SIN-1. In addition to testing in calf eyes, similar effects of ET-1 and ambrisentan were observed in adult bovine and porcine eyes. Conclusions: The compact eye perfusion platform provides an opportunity to efficiently identify compounds that influence outflow facility and may lead to the discovery of new glaucoma therapies.


Assuntos
Humor Aquoso/metabolismo , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Perfusão/instrumentação , Piridinas/farmacologia , Malha Trabecular/metabolismo , Animais , Humor Aquoso/efeitos dos fármacos , Bovinos , Desenho Assistido por Computador , Modelos Animais de Doenças , Endotelina-1/farmacologia , Desenho de Equipamento , Glaucoma/metabolismo , Glaucoma/terapia , Pirazóis/farmacologia , Suínos , Malha Trabecular/efeitos dos fármacos
12.
Prog Retin Eye Res ; 44: 86-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223880

RESUMO

Ocular hypertension in glaucoma develops due to age-related cellular dysfunction in the conventional outflow tract, resulting in increased resistance to aqueous humor outflow. Two cell types, trabecular meshwork (TM) and Schlemm's canal (SC) endothelia, interact in the juxtacanalicular tissue (JCT) region of the conventional outflow tract to regulate outflow resistance. Unlike endothelial cells lining the systemic vasculature, endothelial cells lining the inner wall of SC support a transcellular pressure gradient in the basal to apical direction, thus acting to push the cells off their basal lamina. The resulting biomechanical strain in SC cells is quite large and is likely to be an important determinant of endothelial barrier function, outflow resistance and intraocular pressure. This review summarizes recent work demonstrating how biomechanical properties of SC cells impact glaucoma. SC cells are highly contractile, and such contraction greatly increases cell stiffness. Elevated cell stiffness in glaucoma may reduce the strain experienced by SC cells, decrease the propensity of SC cells to form pores, and thus impair the egress of aqueous humor from the eye. Furthermore, SC cells are sensitive to the stiffness of their local mechanical microenvironment, altering their own cell stiffness and modulating gene expression in response. Significantly, glaucomatous SC cells appear to be hyper-responsive to substrate stiffness. Thus, evidence suggests that targeting the material properties of SC cells will have therapeutic benefits for lowering intraocular pressure in glaucoma.


Assuntos
Fenômenos Biomecânicos/fisiologia , Células Endoteliais/fisiologia , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiologia , Humor Aquoso/metabolismo , Humanos , Espaço Intracelular/fisiologia , Perfusão
13.
Integr Biol (Camb) ; 7(10): 1318-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25953078

RESUMO

When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signalling intermediates with poorly defined relationships to such a physiological endpoint. Using cellular force as the target, here we report a new screening technology and demonstrate its applications using human airway smooth muscle cells in the context of asthma and Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Asma/tratamento farmacológico , Asma/fisiopatologia , Fenômenos Biomecânicos , Células Cultivadas , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Análise de Fourier , Glaucoma/tratamento farmacológico , Glaucoma/fisiopatologia , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Mecanotransdução Celular/fisiologia , Contração Muscular/efeitos dos fármacos
14.
Nanomedicine (Lond) ; 9(18): 2803-15, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24823434

RESUMO

AIM: As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. MATERIALS & METHODS: Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. RESULTS & DISCUSSION: We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. CONCLUSION: Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs.


Assuntos
Cobre/metabolismo , Córnea/citologia , Nanopartículas/metabolismo , Cicatrização/efeitos dos fármacos , Óxido de Zinco/metabolismo , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/toxicidade , Córnea/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Nanopartículas/química , Nanopartículas/toxicidade , Óxido de Zinco/química , Óxido de Zinco/toxicidade
15.
Swiss Med Wkly ; 143: w13766, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519500

RESUMO

Cells reside in mechanically rich and dynamic microenvironments, and the complex interplay between mechanics and biology is widely acknowledged. Recent research has yielded insights linking the mechanobiology of cells, human physiology, and pathophysiology. In particular, we have learned of the cell's astounding ability to sense and respond to its mechanical microenvironment. This seemingly innate behaviour of the cell has driven efforts to characterise precisely the cellular behaviour from a mechanical viewpoint. Here we present an overview of technologies used to probe cell mechanical and material properties, how they have led to the discovery of seemingly strange cellular mechanical behaviours, and their influential role in health and disease, including asthma, cancer, and glaucoma. The properties reviewed here have implications in physiology and pathology and raise questions that will fuel research opportunities for years to come.


Assuntos
Fenômenos Biomecânicos/fisiologia , Biologia Celular , Asma/metabolismo , Hiper-Reatividade Brônquica/metabolismo , Movimento Celular/fisiologia , Técnicas Citológicas , Glaucoma/metabolismo , Humanos , Microscopia , Neoplasias/metabolismo
16.
Biorheology ; 49(5-6): 365-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23380902

RESUMO

One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.


Assuntos
Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Animais , Células Cultivadas , Colágeno Tipo I/metabolismo , Módulo de Elasticidade , Magnetismo , Microscopia Confocal , Miócitos de Músculo Liso/citologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA