Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 109(10): 1979-1989, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33822474

RESUMO

Native decellularized extracellular matrix provides an adequate platform for tissues and organs and promotes the development of organogenesis and tissue remodeling. However, thrombosis poses a great challenge that hinders the transplantation for a substantial organ in vivo. Therefore, anticoagulation and re-reendothelialization of organ biological scaffolds are the primary concerns to be addressed before orthotopic transplantation. Herein, a heparinized decellularized kidney scaffold (HEP-DKSs) was prepared using end-point attachment technology, followed by binding the vascular endothelial growth factor (VEGF) to greatly improve the hemocompatibility and angiogenesis of DKSs. Based on the anticoagulant, co-culture of human umbilical vein endothelial cells, and subcapsular transplantation of kidney experiments, HEP-VEGF-DKSs are shown to reduce platelet adhesion, which is crucial for subsequent vascularization and slow release of heparin and VEGF, suggesting its ability of improve neovascularization. Taken together, these data indicated an optimal anticoagulation function of HEP-VEGF-DKSs and the potential of vascularization for regeneration of whole decellularized kidney.


Assuntos
Heparina/farmacologia , Rim/citologia , Neovascularização Fisiológica , Alicerces Teciduais/química , Animais , Anticoagulantes/farmacologia , Técnicas de Cocultura , Liberação Controlada de Fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ratos Sprague-Dawley , Resistência à Tração , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
J Biomed Mater Res A ; 106(3): 698-705, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28986946

RESUMO

A series of complex influencing factors lead to failure of neural regeneration after spinal cord injury (SCI). Up to now, there is no robust treatment that can restore the loss of function caused by injury. Because damaged spinal axons do not spontaneously regenerate in their naturally inhibitory microenvironments, biomaterials that induce neural regeneration to appear as attractive treatments to improve the microenvironmental conditions after SCI. In this study, we report the novel use of decellularized (DC) scaffolds to provide contact guidance for axonal regrowth in vivo. The idea is that the scaffolds comprise some cytokines and a physical compartment that may facilitate regeneration. To evaluate the efficacy of scaffolds in supporting neural regeneration after SCI, the scaffold was implanted into an injured spinal cord of the rat. The injured spinal scaffolds showed a significant increase of the expression of GAP43, NF200, and Nestin in the scaffold implant groups compared with controls without the scaffold. In addition, the motor function has a better recovery. Together, these results demonstrate that spinal acellular scaffold is capable of promoting axonal regeneration after SCI and may serve as a potential tool in the treatment of SCI. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 698-705, 2018.


Assuntos
Axônios/fisiologia , Regeneração Nervosa/fisiologia , Medula Espinal/fisiologia , Alicerces Teciduais/química , Animais , Comportamento Animal , Barreira Hematoencefálica/metabolismo , Colágeno/metabolismo , Citocinas/metabolismo , Feminino , Proteína GAP-43/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Atividade Motora , Nestina/metabolismo , Proteínas de Neurofilamentos/metabolismo , Ratos Sprague-Dawley , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA