Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Vasc Res ; 61(3): 109-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615660

RESUMO

INTRODUCTION: Following our recent finding that Ucp2 knockout promotes ferroptosis, we aimed to examine whether UCP2 alleviates myocardial ischemia/reperfusion injury (MI/RI) by inhibiting ferroptosis. METHODS: The left anterior descending coronary arteries of wild-type and Ucp2-/- C57BL/6 mice were ligated for 30 min and reperfused for 2 h to establish an MI/RI model. The effects of UCP2 on ferroptosis and MI/RI were determined by echocardiography, 2,3,5-triphenylttrazolium chloride staining, hematoxylin-eosin staining, Masson's trichrome staining, Sirius red staining, and analysis of myocardial injury markers and ferroptosis indicators. Ferrostatin-1 (Fer-1) and erastin (Era) were used to investigate whether UCP2 alleviated MI/RI by inhibiting ferroptosis and the molecular mechanism. RESULTS: UCP2 was upregulated in the MI/RI model in WT mice. Deletion of Ucp2 exacerbated ferroptosis, altered the expression levels of multiple ferroptosis-related genes, and significantly exacerbated MI/RI. Knockout of Ucp2 promoted ferroptosis induced by Era and inhibited the antiferroptotic effects of Fer-1. Knockout of Ucp2 activated the p53/TfR1 pathway to exacerbate ferroptosis. CONCLUSION: Our results showed that UCP2 inhibited ferroptosis in MI/RI, which might be related to regulation of the p53/TfR1 pathway.


Assuntos
Modelos Animais de Doenças , Ferroptose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteína Desacopladora 2 , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/deficiência , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Masculino , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos
2.
Clin Exp Hypertens ; 46(1): 2326022, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507311

RESUMO

BACKGROUND: Emodin is a traditional medicine that has been shown to exert anti-inflammatory and anti-oxidative effects. Previous research has indicated that emodin can alleviate myocardial remodeling and inhibit myocardial hypertrophy and fibrosis. However, the mechanism by which emodin affects myocardial fibrosis (MF) has not yet been elucidated. METHODS: Fibroblasts were treated with ANGII, and a mouse model of MF was established by ligation of the left anterior descending coronary artery. Cell proliferation was examined by a Cell Counting Kit-8 (CCK8) assay. Dihydroethidium (DHE) was used to measure reactive oxygen species (ROS) levels, and Masson and Sirius red staining were used to examine changes in collagen fiber levels. PI3K was over-expressed by lentiviral transfection to verify the effect of emodin on the PI3K/AKT/mTOR signaling axis. Changes in cardiac function in each group were examined by echocardiography. RESULTS: Emodin significantly inhibited fibroblast proliferation, decreased intracellular ROS levels, significantly upregulated collagen II expression, downregulated α-SMA expression, and inhibited PI3K/AKT/mTOR pathway activation in vitro. Moreover, the in vivo results were consistent with the in vitro. Emodin significantly decreased ROS levels in heart tissue and reduced collagen fibrillogenesis. Emodin could regulate the activity of PI3K to increase the expression of collagen II and downregulate α-SMA expression in part through the PI3K/AKT/mTOR pathway, and emodin significantly improved cardiac structure and function in mice. CONCLUSIONS: This study revealed that emodin targeted the PI3K/AKT/mTOR pathway to inhibit the development of myocardial fibrosis and may be an antifibrotic agent for the treatment of cardiac fibrosis.


Assuntos
Emodina , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Emodina/farmacologia , Espécies Reativas de Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fibrose , Colágeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA