Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(4): 980-989, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703490

RESUMO

Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a nonhuman primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from the young and adult stage of male monkeys, at different cortical depths. Superficial layers exhibited an increased baseline firing rate in the adult stage. Unexpectedly, we also detected substantial increases in delay period activity in the middle layers after adolescence, which was confirmed even after excluding penetrations near sulci. Finally, improved discriminability around the saccade period was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement.NEW & NOTEWORTHY Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here, we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, substantial changes were evident in intermediate layers of the prefrontal cortex.


Assuntos
Desenvolvimento do Adolescente , Memória de Curto Prazo , Humanos , Animais , Masculino , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios/fisiologia , Cognição/fisiologia
2.
Nat Commun ; 15(1): 2447, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503752

RESUMO

Long-read sequencing offers long contiguous DNA fragments, facilitating diploid genome assembly and structural variant (SV) detection. Efficient and robust algorithms for SV identification are crucial with increasing data availability. Alignment-based methods, favored for their computational efficiency and lower coverage requirements, are prominent. Alternative approaches, relying solely on available reads for de novo genome assembly and employing assembly-based tools for SV detection via comparison to a reference genome, demand significantly more computational resources. However, the lack of comprehensive benchmarking constrains our comprehension and hampers further algorithm development. Here we systematically compare 14 read alignment-based SV calling methods (including 4 deep learning-based methods and 1 hybrid method), and 4 assembly-based SV calling methods, alongside 4 upstream aligners and 7 assemblers. Assembly-based tools excel in detecting large SVs, especially insertions, and exhibit robustness to evaluation parameter changes and coverage fluctuations. Conversely, alignment-based tools demonstrate superior genotyping accuracy at low sequencing coverage (5-10×) and excel in detecting complex SVs, like translocations, inversions, and duplications. Our evaluation provides performance insights, highlighting the absence of a universally superior tool. We furnish guidelines across 31 criteria combinations, aiding users in selecting the most suitable tools for diverse scenarios and offering directions for further method development.


Assuntos
Algoritmos , Genoma Humano , Humanos , Análise de Sequência de DNA/métodos , Diploide , Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala
3.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38645128

RESUMO

A main limitation of bulk transcriptomic technologies is that individual measurements normally contain contributions from multiple cell populations, impeding the identification of cellular heterogeneity within diseased tissues. To extract cellular insights from existing large cohorts of bulk transcriptomic data, we present CSsingle, a novel method designed to accurately deconvolve bulk data into a predefined set of cell types using a scRNA-seq reference. Through comprehensive benchmark evaluations and analyses using diverse real data sets, we reveal the systematic bias inherent in existing methods, stemming from differences in cell size or library size. Our extensive experiments demonstrate that CSsingle exhibits superior accuracy and robustness compared to leading methods, particularly when dealing with bulk mixtures originating from cell types of markedly different cell sizes, as well as when handling bulk and single-cell reference data obtained from diverse sources. Our work provides an efficient and robust methodology for the integrated analysis of bulk and scRNA-seq data, facilitating various biological and clinical studies.

4.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37546979

RESUMO

Adolescent development is characterized by an improvement in cognitive abilities, such as working memory. Neurophysiological recordings in a non-human primate model of adolescence have revealed changes in neural activity that mirror improvement in behavior, including higher firing rate during the delay intervals of working memory tasks. The laminar distribution of these changes is unknown. By some accounts, persistent activity is more pronounced in superficial layers, so we sought to determine whether changes are most pronounced there. We therefore analyzed neurophysiological recordings from neurons recorded in the young and adult stage, at different cortical depths. Superficial layers exhibited increased baseline firing rate in the adult stage. Unexpectedly, changes in persistent activity were most pronounced in the middle layers. Finally, improved discriminability of stimulus location was most evident in the deeper layers. These results reveal the laminar pattern of neural activity maturation that is associated with cognitive improvement. NEW AND NOTEWORTHY: Structural brain changes are evident during adolescent development particularly in the cortical thickness of the prefrontal cortex, at a time when working memory ability increases markedly. The depth distribution of neurophysiological changes during adolescence is not known. Here we show that neurophysiological changes are not confined to superficial layers, which have most often been implicated in the maintenance of working memory. Contrary to expectations, greatest changes were evident in intermediate layers of the prefrontal cortex.

5.
iScience ; 26(6): 106792, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37235055

RESUMO

Advancements in spatial transcriptomics (ST) have enabled an in-depth understanding of complex tissues by quantifying gene expression at spatially localized spots. Several notable clustering methods have been introduced to utilize both spatial and transcriptional information in the analysis of ST datasets. However, data quality across different ST sequencing techniques and types of datasets influence the performance of different methods and benchmarks. To harness spatial context and transcriptional profile in ST data, we developed a graph-based, multi-stage framework for robust clustering, called ADEPT. To control and stabilize data quality, ADEPT relies on a graph autoencoder backbone and performs an iterative clustering on imputed, differentially expressed genes-based matrices to minimize the variance of clustering results. ADEPT outperformed other popular methods on ST data generated by different platforms across analyses such as spatial domain identification, visualization, spatial trajectory inference, and data denoising.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA