Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2311159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251928

RESUMO

The pursuit of high-performance and long-lasting protonic ceramic electrochemical cells (PCECs) is impeded by the lack of efficient and enduring proton conductors. Conventional research approaches, predominantly based on a trial-and-error methodology, have proven to be demanding of resources and time-consuming. Here, this work reports the findings in harnessing high-throughput computational methods to expedite the discovery of optimal electrolytes for PCECs. This work methodically computes the oxygen vacancy formation energy (EV), hydration energy (EH), and the adsorption energies of H2O and CO2 for a set of 932 oxide candidates. Notably, these findings highlight BaSnxCe0.8-xYb0.2O3-δ (BSCYb) as a prospective game-changing contender, displaying superior proton conductivity and chemical resilience when compared to the well-regarded BaZrxCe0.8-xY0.1Yb0.1O3-δ (BZCYYb) series. Experimental validations substantiate the computational predictions; PCECs incorporating BSCYb as the electrolyte achieved extraordinary peak power densities in the fuel cell mode (0.52 and 1.57 W cm-2 at 450 and 600 °C, respectively), a current density of 2.62 A cm-2 at 1.3 V and 600 °C in the electrolysis mode while demonstrating exceptional durability for over 1000-h when exposed to 50% H2O. This research underscores the transformative potential of high-throughput computational techniques in advancing the field of proton-conducting oxides for sustainable power generation and hydrogen production.

2.
Membranes (Basel) ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392671

RESUMO

The phase inversion tape casting has been widely used to fabricate open straight porous supports for solid oxide fuel cells (SOFCs), which can offer better gas transmission and minimize the concentration polarization. However, the overall weak strength of the macro-porous structure still limits the applications of these SOFCs. In this work, a novel SOFC supported by an ordered porous cathode membrane with a four-layer configuration containing a finger-like porous 3 mol% yttria- stabilized zirconia (3YSZ)-La0.8Sr0.2Co0.6Fe0.4O3-δ (LSCF) catalyst, porous 8 mol% yttria-stabilized zirconia (8YSZ)-LSCF catalyst, and dense 8YSZ porous 8YSZ-NiO catalyst is successfully prepared by the phase inversion tape casting, dip-coating, co-sintering, and impregnation process. The flexural strength of the open straight porous 3YSZ membrane is as high as 131.95 MPa, which meets the requirement for SOFCs. The cathode-supported single cell shows a peak power density of 540 mW cm-2 at 850 °C using H2 as the fuel. The degradation mechanism of the SOFC is investigated by the combination of microstructure characterization and distribution of relaxation times (DRT) analysis.

3.
Adv Mater ; 36(33): e2313966, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853746

RESUMO

Solid oxide fuel cells utilized with NH3 (NH3-SOFCs) have great potential to be environmentally friendly devices with high efficiency and energy density. The advancement of this technology is hindered by the sluggish kinetics of chemical or electrochemical processes occurring on anodes/catalysts. Extensive efforts have been devoted to developing efficient and durable anode/catalysts in recent decades. Although modifications to the structure, composition, and morphology of anodes or catalysts are effective, the mechanistic understandings of performance improvements or degradations remain incompletely understood. This review informatively commences by summarizing existing reports on the progress of NH3-SOFCs. It subsequently outlines the influence of factors on the performance of NH3-SOFCs. The degradation mechanisms of the cells/systems are also reviewed. Lastly, the persistent challenges in designing highly efficient electrodes/catalysts for low-temperature NH3-SOFCs, and future perspectives derived from SOFCs are discussed. Notably, durability, thermal cycling stability, and power density are identified as crucial indicators for enhancing low-temperature (550 °C or below) NH3-SOFCs. This review aims to offer an updated overview of how catalysts/electrodes affect electrochemical activity and durability, offering critical insights for improving performance and mechanistic understanding, as well as establishing the scientific foundation for the design of electrodes for NH3-SOFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA