Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(36): 14559-14567, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37647244

RESUMO

The construction and design of pyrotechnics with superior performance is not only a task of great significance but also a tremendous challenge. In this regard, we present the syntheses of novel green primary colors pyrotechnics (red, green, and blue light-generating pyrotechnics) by employing 4-chloro-3,5-dinitropyrazole (CDNP) as a multifunctional raw material. CDNP contains a flame enhancer, oxygen-rich functional group, and nitrogen heterocyclic combustibles, which contribute to the high performance of the pyrotechnics. The characteristic elements (strontium, barium, and copper) that impart color to the flame are combined with the CDNP to synthesize the primary colors pyrotechnics by an "all-in-one" strategy. The structures of three energetic metal salts (EMS-1, EMS-2, and EMS-3) are completely characterized, and their thermal stability, sensitivity, ignition performance, and color purity are systematically evaluated. All EMSs show excellent thermal stability and low mechanical sensitivities (>330 °C, >40 J, >360 N). Moreover, the EMSs demonstrate successful ignition and combustion under laser conditions and roasting test conditions, producing bright characteristic flames. Chromaticity analysis reveals that the three EMSs possess good color purities of 91, 80, and 70%, respectively. Consequently, the three integrated pyrotechnics exhibit exceptional combustion properties, highlighting their potential for use in various pyrotechnic applications.

2.
Chemistry ; 22(23): 7670-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27061423

RESUMO

Energetic materials (explosives, propellants, and pyrotechnics) are used extensively for both civilian and military applications and the development of such materials, particularly in the case of energetic salts, is subject to continuous research efforts all over the world. This Review concerns recent advances in the syntheses, properties, and potential applications of ionic salts based on tetrazole N-oxide. Most of these salts exhibit excellent characteristics and can be classified as a new family of highly energetic materials with increased density and performance, alongside decreased mechanical sensitivity. Additionally, novel tetrazole N-oxide salts are proposed based on a diverse array of functional groups and ions pairs, which may be promising candidates for new energetic materials.

3.
Heliyon ; 9(5): e16065, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206043

RESUMO

With the emergence of various filtering technologies, the radar jamming efficiency of the technology based on radar cross section is ever lower, therefore cannot meet military requirements. In this context, the jamming technology based on attenuation mechanism has been developed and plays an increasingly important role in disturbing radar detecting. Magnetically expanded graphite (MEG) has excellent attenuation efficiency because it can cause dielectric loss as well as magnetic loss. Moreover, MEG features good impedance matching, which makes more incidence of electromagnetic waves into the material; and its multi-layer structure is conducive for electromagnetic wave reflection and absorption. In this work, the structure model of MEG was established by analyzing the layered structure of expanded graphite (EG) and the dispersion of intercalated magnetic particles. The electromagnetic parameters of thus-modeled MEG were calculated based on the equivalent medium theory; and effects of EG size, magnetic particle type and volume fraction on the attenuation performance were studied by the variational method. It is indicated that MEG with 500-µm diameter has the best attenuation effect and the highest increment of absorption cross section appears at 50% volume fraction of the magnetic particles at 2 GHz. The imaginary part of complex permeability of the magnetic material has the most significant influence on the attenuation effect of MEG. This study provides guidance for the design and application of MEG materials in disturbing radar detecting field.

4.
J Mol Model ; 18(8): 3915-26, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22431226

RESUMO

RDX as a component in composition B (TNT + RDX) was first studied by us on its mechanism and kinetics of decomposition reactions in this paper. We have pointed out three possible pathways and found a new low-energy process of its decomposition. The N-N bond cleavage in composition B has higher dissociation energies than the monomer, but it is also the initial step. The optimized structures and the frequencies of all the stationary points were calculated at the B3LYP/6-31G(d) level. The minimum-energy paths were obtained by using the intrinsic reaction coordinate (IRC) theory, and the reaction potential energy curve was corrected with zero-point energy. Finally, the rate constants were calculated in a wide temperature region from 200 to 2500 K using TST, TST/Eckart theories. The obtained results also indicate that the tunneling effects are remarkable at low temperature (200 K

Assuntos
Substâncias Explosivas/química , Nitrosaminas/química , Trinitrotolueno/química , Simulação por Computador , Cinética , Modelos Químicos , Modelos Moleculares , Teoria Quântica , Termodinâmica
5.
J Mol Model ; 18(6): 2855-60, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22127608

RESUMO

First-principles methods using the TPSS density functional level of theory with the basis set 6-31G** were applied to study (5-cyanotetrazolato-N(2)) pentaammine cobalt (III) perchlorate (CP) and Ni, Fe and Zn analogues in the gas phase. The optimized lowest-energy geometry of CP was calculated from reported experimental structural data using the TPSS method. The calculated values are in good agreement with those measured by X-ray diffraction. Ni, Fe and Zn analogues were constructed and calculated on the same basis. NBO results showed that the metal-ligand interactions have covalent character. Donor-acceptor analyses predicted that the delocalization energy E(2) decreases from Co to Zn, so the covalent nature of the complexes increases in the order Co>Fe>Ni>Zn. In addition, HOMO-LUMO composition was investigated to determine the stability of the title compounds.


Assuntos
Complexos de Coordenação/química , Metais Pesados/química , Modelos Moleculares , Nitrilas/química , Percloratos/química , Tetrazóis/química , Algoritmos , Simulação por Computador , Modelos Químicos , Conformação Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA